On the Distribution of the spt -Crank

被引:14
作者
Andrews, George E. [1 ]
Dyson, Freeman J. [2 ]
Rhoades, Robert C. [3 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[3] Stanford Univ, Dept Math, Bldg 380, Stanford, CA 94305 USA
关键词
partitions; partition crank; partition rank; spt-crank; unimodal;
D O I
10.3390/math1030076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Andrews, Garvan and Liang introduced the spt-crank for vector partitions. We conjecture that for any n the sequence {N-S(m; n)}(m) is unimodal, where N-S(m; n) is the number of S-partitions of size n with crank m weight by the spt -crank. We relate this conjecture to a distributional result concerning the usual rank and crank of unrestricted partitions. This leads to a heuristic that suggests the conjecture is true and allows us to asymptotically establish the conjecture. Additionally, we give an asymptotic study for the distribution of the spt -crank statistic. Finally, we give some speculations about a definition for the spt - crank in terms of "marked" partitions. A "marked" partition is an unrestricted integer partition where each part is marked with a multiplicity number. It remains an interesting and apparently challenging problem to interpret the spt - crank in terms of ordinary integer partitions.
引用
收藏
页码:76 / 88
页数:13
相关论文
共 20 条
[1]  
Andrews G. E., 2013, ACTA ARITHM IN PRESS
[2]   DYSONS CRANK OF A PARTITION [J].
ANDREWS, GE ;
GARVAN, FG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :167-171
[3]   Combinatorial interpretations of congruences for the spt-function [J].
Andrews, George E. ;
Garvan, Frank G. ;
Liang, Jie .
RAMANUJAN JOURNAL, 2012, 29 (1-3) :321-338
[4]   The odd moments of ranks and cranks [J].
Andrews, George E. ;
Chan, Song Heng ;
Kim, Byungchan .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (01) :77-91
[5]   The number of smallest parts in the partitions of n [J].
Andrews, George E. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 624 :133-142
[6]  
Atkin A.O.L., 1954, P LOND MATH SOC, V66, P84, DOI [DOI 10.1112/PLMS/S3-4.1.84, 10.1112/plms/s3-4.1.84]
[7]  
Bringmann K., 2013, P CAMB PHIL SO UNPUB
[8]   Asymptotics for rank and crank moments [J].
Bringmann, Kathrin ;
Mahlburg, Karl ;
Rhoades, Robert C. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :661-672
[9]   INEQUALITIES BETWEEN RANKS AND CRANKS [J].
Bringmann, Kathrin ;
Mahlburg, Karl .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (08) :2567-2574
[10]  
Chen W. Y. C., PROOF ANDREWS DYSON