GENERALIZED CUTOFF RATES AND RENYIS INFORMATION MEASURES

被引:225
作者
CSISZAR, I
机构
[1] Mathematical Institute of the Hungarian Academy of Sciences, H-1364 Budapest
基金
匈牙利科学研究基金会;
关键词
ALPHA-ENTROPY; CHANNEL CAPACITY OF ORDER ALPHA; HYPOTHESIS TESTING; OPERATIONAL CHARACTERIZATION;
D O I
10.1109/18.370121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Renyi's entropy and divergence of order alpha are given operational characterizations in terms of block coding and hypothesis testing, as so-called beta-cutoff rates, with alpha = (1 + beta)(-1) for entropy and alpha = (1 - beta)(-1) for divergence. Out of several possible definitions of mutual information and channel capacity of order alpha, our approach distinguishes one that admits an operational characterization as beta-cutoff rate for channel coding, with alpha = (1 - beta)(-1) The ordinary cutoff rate of a DMC corresponds to beta = -1.
引用
收藏
页码:26 / 34
页数:9
相关论文
共 23 条
[1]   AN UPPER BOUND ON THE CUTOFF RATE OF SEQUENTIAL-DECODING [J].
ARIKAN, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (01) :55-63
[2]  
Arimoto S., 1977, C MATH SOC J BOLYAI, V16, P41
[3]  
Augustin U., 1978, THESIS U ERLANGEN NU
[4]   RENYI ENTROPY AND PROBABILITY OF ERROR [J].
BENBASSAT, M ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :324-331
[5]   CODING THEOREM AND RENYIS ENTROPY [J].
CAMPBELL, LL .
INFORMATION AND CONTROL, 1965, 8 (04) :423-&
[6]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[7]  
Csisz?r I., 1972, PERIOD MATH HUNG, V2, P191
[8]  
Csiszar I., 1971, STUD SCI MATH HUNG, V6, P181
[9]  
Csiszar I., 1963, MAGYAR TUD AKAD MAT, V8, P85
[10]  
CSISZAR I, 1981, INFORMATION THEORY C