FUBINI THEOREM FOR ANTICIPATING STOCHASTIC INTEGRALS IN HILBERT-SPACE

被引:10
作者
LEON, JA
机构
[1] Departamento de Matemáticas, Centro de Investigatión y de Estudios Avanzados
关键词
ANTICIPATING STOCHASTIC INTEGRAL; CYLINDRICAL WIENER PROCESS; FUBINI THEOREM; STOCHASTIC EVOLUTION EQUATIONS;
D O I
10.1007/BF01314821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, C, mu) be a measure space, let W be a cylindrical Hilbert-Wiener process, and let phi be an anticipating integrable process-valued function on X. We prove, under natural assumptions on phi, that there exists a measurable version Y(x), x is-an-element-of X, of the anticipating integral of phi(x) such that the integral integralx Y(x)mu(dx) is a version of the anticipating integral of integral x phi(x)mu(dx). We apply this anticipating Fubini theorem to study solutions of a class of stochastic evolution equations in Hilbert space.
引用
收藏
页码:313 / 327
页数:15
相关论文
共 15 条
[1]   A MALLIAVIN-TYPE ANTICIPATIVE STOCHASTIC CALCULUS [J].
BERGER, MA .
ANNALS OF PROBABILITY, 1988, 16 (01) :231-245
[2]  
BOJDECKI T, 1989, GAUSSIAN NONGAUSSIAN
[3]  
Chojnowska-Michalik A, 1979, PROBABILITY THEORY, V5, P53
[4]   STAR-SOLUTIONS OF EVOLUTION-EQUATIONS IN HILBERT-SPACE [J].
DAWSON, DA ;
GOROSTIZA, LG .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 68 (03) :299-319
[5]  
GRORUD A, 1989, INTEGRALES HILBERTIE
[6]  
Ikeda N., 1981, STOCHASTIC DIFFERENT
[7]  
JACOD J, 1979, LECTURE NOTES MATH, V714
[8]  
KALLIANPUR G, 1990, SKOROHOD INTEGRAL AN
[9]   ON EQUIVALENCE OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL-EQUATIONS WITH ANTICIPATING EVOLUTION SYSTEMS [J].
LEON, JA .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1990, 8 (03) :363-387
[10]   STOCHASTIC FUBINI THEOREM FOR SEMIMARTINGALES IN HILBERT-SPACE [J].
LEON, JA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (05) :890-901