STABILITY OF A QUARTIC AND ORTHOGONALLY QUARTIC FUNCTIONAL EQUATION

被引:0
|
作者
Arunkumar, M. [1 ]
Ravi, K. [2 ]
Rassias, M. J. [3 ]
机构
[1] Govt Arts Coll, Dept Math, Tiruvannmalai 606603, Tamil Nadu, India
[2] Sacred Heart Coll, Dept Math, Tirupattur 635601, Tamil Nadu, India
[3] Univ Glasgow, Dept Stat, Glasgow G12 8QQ, Lanark, Scotland
关键词
Quartic functional equation; Generalized Hyers-Ulam-Rassias stability; orthogonality space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors investigate the generalized Hyers-Ulam-Aoki-Rassias stability of a quartic functional equation g(2x + y + z) + g(2x + y - z) + g(2x - y + z) + g(-2x + y + z) + 16 g(y) + 16 g(z) = 8[g(x + y) + g(x -y) + g(x + z) + g(x - z)] + 2[g(y + z) + g(y - z)] + 32 g(x). (1) The above equation(1) is modified and its Hyers-Ulam-Aoki-Rassias stability for the following quartic functional equation f(2x + y + z) + f(2x + y - z) + f(2x - y + z) + f(-2x + y + z) + f(2y) + f(2z) = 8[f(x + y) + f(x - y) + f(x + z) + f(x - z)] + 2[f(y + z) + f(y - z)] + 32 f(x) (2) for all x, y, z. X with x perpendicular to y, y perpendicular to z and z perpendicular to x is discussed in orthogonality space in the sense of Ratz.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 50 条
  • [41] MODIFIED HYERS-ULAM STABILITY OF A JENSEN TYPE QUARTIC FUNCTIONAL EQUATION
    Kim, Hark-Mahn
    Ko, Hoon
    Son, Eunyoung
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2008, 15 (02): : 153 - 161
  • [42] On a quartic diophantine equation
    Stroeker, RJ
    DeWeger, BMM
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1996, 39 : 97 - 114
  • [43] A solution to the quartic equation
    Yacoub, Michel
    Fraidenraich, Gustavo
    MATHEMATICAL GAZETTE, 2012, 96 (536): : 271 - 275
  • [44] A Generalized Mixed Quadratic-Quartic Functional Equation
    Xu, Tian Zhou
    Rassias, John Michael
    Xu, Wan Xin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (03) : 633 - 649
  • [45] A Fixed Point Approach to the Stability of an Additive-Quadratic-Cubic-Quartic Functional Equation
    JungRye Lee
    Ji-hye Kim
    Choonkil Park
    Fixed Point Theory and Applications, 2010
  • [46] The Hyers-Ulam-Rassias stability of the quartic functional equation in fuzzy β-normed spaces
    Xiuzhong Yang
    Guannan Shen
    Guofen Liu
    Lidan Chang
    Journal of Inequalities and Applications, 2015
  • [47] HYERS-ULAM-RASSIAS STABILITY OF AN ADDITIVE-QUADRATIC-QUARTIC FUNCTIONAL EQUATION
    Lee, Yang-Hi
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (04): : 813 - 821
  • [48] On the Stability of a Generalized Quadratic and Quartic Type Functional Equation in Quasi-Banach Spaces
    M. Eshaghi Gordji
    S. Abbaszadeh
    Choonkil Park
    Journal of Inequalities and Applications, 2009
  • [49] Stability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces
    Wang, Zhihua
    Li, Xiaopei
    Rassias, Themistocles M.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [50] On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces
    Wongkum, Kittipong
    Kumam, Poom
    Cho, Yeol Je
    Thounthong, Phatiphat
    Chaipunya, Parin
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04): : 1399 - 1406