STABILITY OF A QUARTIC AND ORTHOGONALLY QUARTIC FUNCTIONAL EQUATION

被引:0
|
作者
Arunkumar, M. [1 ]
Ravi, K. [2 ]
Rassias, M. J. [3 ]
机构
[1] Govt Arts Coll, Dept Math, Tiruvannmalai 606603, Tamil Nadu, India
[2] Sacred Heart Coll, Dept Math, Tirupattur 635601, Tamil Nadu, India
[3] Univ Glasgow, Dept Stat, Glasgow G12 8QQ, Lanark, Scotland
关键词
Quartic functional equation; Generalized Hyers-Ulam-Rassias stability; orthogonality space;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors investigate the generalized Hyers-Ulam-Aoki-Rassias stability of a quartic functional equation g(2x + y + z) + g(2x + y - z) + g(2x - y + z) + g(-2x + y + z) + 16 g(y) + 16 g(z) = 8[g(x + y) + g(x -y) + g(x + z) + g(x - z)] + 2[g(y + z) + g(y - z)] + 32 g(x). (1) The above equation(1) is modified and its Hyers-Ulam-Aoki-Rassias stability for the following quartic functional equation f(2x + y + z) + f(2x + y - z) + f(2x - y + z) + f(-2x + y + z) + f(2y) + f(2z) = 8[f(x + y) + f(x - y) + f(x + z) + f(x - z)] + 2[f(y + z) + f(y - z)] + 32 f(x) (2) for all x, y, z. X with x perpendicular to y, y perpendicular to z and z perpendicular to x is discussed in orthogonality space in the sense of Ratz.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 50 条
  • [31] Y Stability of an additive-quartic functional equation in modular spaces
    Karthikeyan, S.
    Park, Choonkil
    Palani, P.
    Kumar, T. R. K.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2020, 26 (01): : 22 - 40
  • [32] General Cubic-Quartic Functional Equation
    Gordji, M. Eshaghi
    Kamyar, M.
    Rassias, Th. M.
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [33] FUZZY STABILITY OF A CUBIC-QUARTIC FUNCTIONAL EQUATION: A FIXED POINT APPROACH
    Jang, Sun-Young
    Park, Choonkil
    Shin, Dong Yun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 491 - 503
  • [34] Orthogonal stability of an additive-quartic functional equation with the fixed point alternative
    Sung Jin Lee
    Choonkil Park
    Reza Saadati
    Journal of Inequalities and Applications, 2012
  • [35] Intuitionistic fuzzy stability of an Euler-Lagrange type quartic functional equation
    Ebadian, Ali
    Park, Choonkil
    Shin, Dong Yun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (03) : 578 - 589
  • [36] Orthogonal stability of an additive-quartic functional equation with the fixed point alternative
    Lee, Sung Jin
    Park, Choonkil
    Saadati, Reza
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012, : 1 - 10
  • [37] A FIXED POINT APPROACH TO THE STABILITY OF AN ADDITIVE-CUBIC-QUARTIC FUNCTIONAL EQUATION
    Lee, Yang-hi
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2019, 26 (04): : 267 - 276
  • [38] A quartic functional equation and its generalized Hyers-Ulam-Rassias stability
    Petapirak, Montakarn
    Nakmahachalasint, Paisan
    THAI JOURNAL OF MATHEMATICS, 2008, 6 (03): : 77 - 84
  • [39] INTUITIONISTIC FUZZY STABILITY OF AN EULER-LAGRANGE TYPE QUARTIC FUNCTIONAL EQUATION
    Ebadian, Ali
    Park, Choonkil
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (03): : 1659 - 1673
  • [40] Hyers-Ulam stability of an n-variable quartic functional equation
    Govindan, Vediyappan
    Hwang, Inho
    Park, Choonkil
    AIMS MATHEMATICS, 2021, 6 (02): : 1452 - 1469