TOEPLITZ MATRICES AND COMMUTING TRIDIAGONAL MATRICES

被引:1
作者
PERLINE, R [1 ]
机构
[1] ETH ZURICH, ZURICH, SWITZERLAND
关键词
TOEPLITZ MATRICES;
D O I
10.1137/0612023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new proof is presented of the existence of commuting tridiagonal matrices for a particular family of Toeplitz matrices.
引用
收藏
页码:321 / 326
页数:6
相关论文
共 22 条
[1]   EIGENVECTORS AND FUNCTIONS OF THE DISCRETE FOURIER-TRANSFORM [J].
DICKINSON, BW ;
STEIGLITZ, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (01) :25-31
[4]  
GRUNBAUM FA, 1981, LINEAR ALGEBRA APPL, V40, P25, DOI 10.1016/0024-3795(81)90138-5
[5]  
GRUNBAUM FA, 1981, SIAM J ALGEBRA DISCR, V2, P136
[6]  
GRUNBAUM FA, 1982, SIAM J APPL MATH, V42, P941
[7]  
GRUNBAUM FA, 1979, LBL9298 TECH REP
[8]  
GUSTAVSON F, 1979, IBM RC7551 RES CTR Y
[9]   INVERSES OF TOEPLITZ OPERATORS, INNOVATIONS, AND ORTHOGONAL POLYNOMIALS [J].
KAILATH, T ;
VIEIRA, A ;
MORF, M .
SIAM REVIEW, 1978, 20 (01) :106-119
[10]   PROLATE SPHEROIDAL WAVE FUNCTIONS, FOURIER ANALYSIS AND UNCERTAINTY .3. DIMENSION OF SPACE OF ESSENTIALLY TIME- AND BAND-LIMITED SIGNALS [J].
LANDAU, HJ ;
POLLAK, HO .
BELL SYSTEM TECHNICAL JOURNAL, 1962, 41 (04) :1295-+