DERIVATION AND IMPLEMENTATION OF AN EFFICIENT FAST FOURIER-TRANSFORM ALGORITHM (EFFT)

被引:0
作者
SKARJUNE, R
机构
[1] 3M, St. Paul, MN, USA, 3M, St. Paul, MN, USA
来源
COMPUTERS & CHEMISTRY | 1986年 / 10卷 / 04期
关键词
MATHEMATICAL TRANSFORMATIONS - Fast Fourier Transforms;
D O I
10.1016/0097-8485(86)85012-4
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An analysis of the sequence of calculations during a standard radix-2 Fast Fourier Transform (FFT) computer algorithm reveals that additional multiplications beyond those normally eliminated by the conventional algorithms are also found to be unnecessary. In particular, the arguments for the trigonometric functions are always used in a well-defined 'modified' bit-inverted order. The first four arguments within any pass yield reductions of multiplications via trigonometric identities. Further, by placing the trigonometric parameters in a look-up table in the same modified order, the minimum number of multiplications for a radix-2 FFT is performed by a simplified algorithm termed the EFFT (Efficient Fast Fourier Transform). This algorithm requires no reference to a bit-inversion procedure or look-up table until the output points are 'unscrambled' at the conclusion.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1971, PULSE FOURIER TRANSF
[2]   A GUIDED TOUR OF FAST FOURIER TRANSFORM [J].
BERGLAND, GD .
IEEE SPECTRUM, 1969, 6 (07) :41-+
[4]  
BRIGHAM EO, 1975, FAST FOURIER TRANSFO
[5]  
CHAMPENEY D. C., 1973, FOURIER TRANSFORMS T
[6]  
COCHRANE WT, 1967, IEEE P, V35, P1664
[7]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[8]  
Ellett J.D., 1971, ADV MAGN RESON, V662, P117
[9]   APPLICATION OF FOURIER TRANSFORM SPECTROSCOPY TO MAGNETIC RESONANCE [J].
ERNST, RR ;
ANDERSON, WA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1966, 37 (01) :93-+
[10]  
Griffiths P. R., 1978, TRANSFORM TECHNIQUES