THE ASYMPTOTIC-BEHAVIOR OF LOCAL-TIMES AND OCCUPATION INTEGRALS OF THE N-PARAMETER WIENER PROCESS IN R(D)

被引:18
作者
IMKELLER, P [1 ]
WEISZ, F [1 ]
机构
[1] EOTVOS L UNIV,DEPT NUMER ANAL,H-1117 BUDAPEST,HUNGARY
关键词
D O I
10.1007/BF01311348
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let L(x, T), x is-an-element-of R(d), T is-an-element-of R+(N), be the local time of the N-parameter Wiener process W taking values. in R(d). Even in the distribution valued cases d greater-than-or-equal-to 2 N, L can be described in a series representation by means of multiple Wiener-Ito integrals. This setting proves to be a good starting point for the investigation of the asymptotic behaviour of L(x, T) as absolute value of x --> 0 and/or T --> infinity and of related occupation integrals X(T)(f) = integral [0,T] f(W(s)) ds as T --> infinity. We obtain the rates of explosion in laws of the first order, i.e. normalized convergence laws for L(x, T) resp. X(T)(f), and of the second order, i.e. normalized convergence laws for L(x, T)-E(L(x, T)) resp. X(T)(f)-E(X(T)(f)).
引用
收藏
页码:47 / 75
页数:29
相关论文
共 15 条
[1]   GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS - LOCAL TIMES AND SAMPLE FUNCTION PROPERTIES [J].
BERMAN, SM .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (04) :1260-&
[2]  
Bouleau N., 1991, DEGRUYTER STUDIES MA, V14
[3]   STOCHASTIC INTEGRALS IN PLANE [J].
CAIROLI, R ;
WALSH, JB .
ACTA MATHEMATICA, 1975, 134 (1-2) :111-183
[4]  
Dozzi M., 1988, Stochastics, V25, P155, DOI 10.1080/17442508808833537
[5]  
DOZZI M, 1986, THESIS U BERN
[6]  
EHM W, 1981, Z WAHRSCHEINLICHKEIT, V56, P195, DOI 10.1007/BF00535741
[7]  
IMKELLER P, 1984, ANN I H POINCARE-PR, V20, P75
[8]  
IMKELLER P, 1992, CHAOS EXPANSIONS DOU
[9]  
IMKELLER P, IN PRESS MATH NACHR
[10]   ERGODIC PROPERTY OF THE BROWNIAN MOTION PROCESS [J].
KALLIANPUR, G ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1953, 39 (06) :525-533