RECENT MATHEMATICAL DEVELOPMENTS ON EMPIRICAL MODE DECOMPOSITION

被引:13
作者
Xu, Yuesheng [1 ,2 ]
Zhang, Haizhang [3 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Empirical mode decomposition; the Hilbert-Huang transform; intrinsic mode functions; mathematical foundation; spectral sequences; orthonormal bases; nonlinear phases; the Bedrosian identity;
D O I
10.1142/S1793536909000242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building the mathematical foundation for the empirical mode decomposition is an important issue in adaptive data analysis. The task of building such a foundation consists of two stages. The first is to construct a large bank of basis functions for the time-frequency analysis of nonlinear and nonstationary signals. The second is to establish a fast adaptive decomposition algorithm. We survey recent mathematical progress on these two stages. Related results on piecewise linear spectral sequences and the Bedrosian identity are also reviewed.
引用
收藏
页码:681 / 702
页数:22
相关论文
共 50 条
  • [11] ONLINE EMPIRICAL MODE DECOMPOSITION
    Fontugne, Romain
    Borgnat, Pierre
    Flandrin, Patrick
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4306 - 4310
  • [12] Bivariate empirical mode decomposition
    Rilling, Gabriel
    Flandrin, Patrick
    Goncalves, Paulo
    Lilly, Jonathan M.
    IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (12) : 936 - 939
  • [13] Empirical mode decomposition on surfaces
    Wang, Hui
    Su, Zhixun
    Cao, Junjie
    Wang, Ye
    Zhang, Hao
    GRAPHICAL MODELS, 2012, 74 : 173 - 183
  • [14] GRAPH EMPIRICAL MODE DECOMPOSITION
    Tremblay, Nicolas
    Borgnat, Pierre
    Flandrin, Patrick
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 2350 - 2354
  • [15] A CRITERION FOR SELECTING RELEVANT INTRINSIC MODE FUNCTIONS IN EMPIRICAL MODE DECOMPOSITION
    Ayenu-Prah, Albert
    Attoh-Okine, Nii
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2010, 2 (01) : 1 - 24
  • [16] Performance Investigation of Empirical Mode Decomposition in Biomedical Signals
    Karagiannis, Alexandros
    Constantinou, Philip
    WIRELESS MOBILE COMMUNICATION AND HEALTHCARE, 2011, 55 : 117 - 124
  • [17] Optimized Curvelet-based Empirical Mode Decomposition
    Wu, Renjie
    Zhang, Qieshi
    Kamata, Sei-ichiro
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2014), 2015, 9445
  • [18] Compression of AIRS data using empirical mode decomposition
    Gladkova, I
    Roytman, L
    Goldberg, M
    Weber, J
    ATMOSPHERIC AND ENVIRONMENTAL REMOTE SENSING DATA PROCESSING AND UTILIZATION: AN END TO END SYSTEM PERSPECTIVE, 2004, 5548 : 88 - 98
  • [19] Hierarchical decomposition based on a variation of empirical mode decomposition
    Muhammad Kaleem
    Aziz Guergachi
    Sridhar Krishnan
    Signal, Image and Video Processing, 2017, 11 : 793 - 800
  • [20] Empirical Mode Decomposition: Improvement and Application
    Peel, M. C.
    Pegram, G. G. S.
    McMahon, T. A.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 2996 - 3002