RECENT MATHEMATICAL DEVELOPMENTS ON EMPIRICAL MODE DECOMPOSITION

被引:13
作者
Xu, Yuesheng [1 ,2 ]
Zhang, Haizhang [3 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Empirical mode decomposition; the Hilbert-Huang transform; intrinsic mode functions; mathematical foundation; spectral sequences; orthonormal bases; nonlinear phases; the Bedrosian identity;
D O I
10.1142/S1793536909000242
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Building the mathematical foundation for the empirical mode decomposition is an important issue in adaptive data analysis. The task of building such a foundation consists of two stages. The first is to construct a large bank of basis functions for the time-frequency analysis of nonlinear and nonstationary signals. The second is to establish a fast adaptive decomposition algorithm. We survey recent mathematical progress on these two stages. Related results on piecewise linear spectral sequences and the Bedrosian identity are also reviewed.
引用
收藏
页码:681 / 702
页数:22
相关论文
共 50 条
  • [1] Multivariate empirical mode decomposition
    Rehman, N.
    Mandic, D. P.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2117): : 1291 - 1302
  • [2] Knife Diagnostics with Empirical Mode Decomposition
    Cotogno, Michele
    Cocconcelli, Marco
    Rubini, Riccardo
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS, 2016, 4 : 167 - 175
  • [3] Application of Empirical Mode Decomposition to Cardiorespiratory Synchronization
    Wu, Ming-Chya
    Hu, Chin-Kun
    COMPLEX DYNAMICS IN PHYSIOLOGICAL SYSTEMS: FROM HEART TO BRAIN, 2009, : 167 - +
  • [4] Empirical Mode Decomposition using the Second Derivative
    Park, Min-Su
    Kim, Donghoh
    Oh, Hee-Seok
    KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (02) : 335 - 347
  • [5] Nonpolynomial Spline Based Empirical Mode Decomposition
    Singh, Pushpendra
    Srivastava, Pankaj Kumar
    Patney, Rakesh Kumar
    Joshi, Shiv Dutt
    Saha, Kaushik
    2013 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICSC), 2013, : 435 - 440
  • [6] Voiced speech analysis by empirical mode decomposition
    Bouzid, Aicha
    Ellouze, Noureddine
    ADVANCES IN NONLINEAR SPEECH PROCESSING, 2007, 4885 : 213 - +
  • [7] Using Empirical Mode Decomposition for Ground Filtering
    Ozcan, Abdullah H.
    Unsalan, Cem
    2015 7TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2015, : 317 - 321
  • [8] Iris recognition based on empirical mode decomposition
    Han M.
    Peng Y.
    Zhang S.
    Sun W.
    Guangxue Xuebao/Acta Optica Sinica, 2010, 30 (02): : 364 - 368
  • [9] Comparison of performances of variational mode decomposition and empirical mode decomposition
    Yue, Yingjuan
    Sun, Gang
    Cai, Yanping
    Chen, Ru
    Wang, Xu
    Zhang, Shixiong
    ENERGY SCIENCE AND APPLIED TECHNOLOGY (ESAT 2016), 2016, : 469 - 476
  • [10] Enhanced empirical mode decomposition
    Donnelly, Denis
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2008, PT 2, PROCEEDINGS, 2008, 5073 : 696 - 706