The size of graphs with given edge inclusive connectivity

被引:0
作者
Lai, HJ
Lai, HY
机构
[1] W VIRGINIA UNIV,MORGANTOWN,WV 26056
[2] WAYNE STATE UNIV,DETROIT,MI 48202
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [Discrete Math. 46 (1983) 191 - 198], the concept of inclusive edge connectivity was introduced and discussed. Given a vertex upsilon is an element of V(G), the inclusive edge connectivity of upsilon, denoted by lambda(i)(upsilon, G), is the minimum number of edges whose deletion results in a subgraph of G in which upsilon is a cut-vertex. Define lambda(i)(G) = min{lambda(i)(upsilon, G) : upsilon is an element of V(G), and d(G)(upsilon)greater than or equal to 2} to be the inclusive edge connectivity of G. Extremal problems on lambda(i)(G) are studied in this paper.
引用
收藏
页码:225 / 239
页数:15
相关论文
共 50 条
  • [31] Edge connectivity and super edge-connectivity of jump graphs
    Chen, Xing
    Liu, Juan
    Xie, Dongyang
    Meng, Jixiang
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2016, 37 (02) : 233 - 246
  • [32] On the Spectral Radius of Minimally 2-(Edge)-Connected Graphs with Given Size
    Lou, Zhenzhen
    Min, Gao
    Huang, Qiongxiang
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02) : 1 - 19
  • [33] RESULTS ON EDGE CONNECTIVITY OF GRAPHS
    LESNIAK, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A33 - A33
  • [34] ON THE SIZE OF GRAPHS OF A GIVEN BANDWIDTH
    DUTTON, RD
    BRIGHAM, RC
    DISCRETE MATHEMATICS, 1989, 76 (03) : 191 - 195
  • [35] Restricted edge connectivity of edge transitive graphs
    Zhang, Z
    Meng, JX
    ARS COMBINATORIA, 2006, 78 : 297 - 308
  • [36] The minimum restricted edge-connected graph and the minimum size of graphs with a given edge-degree
    Yang, Weihua
    Tian, Yingzhi
    Li, Hengzhe
    Li, Hao
    Guo, Xiaofeng
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 304 - 309
  • [37] The edge-connectivity and restricted edge-connectivity of a product of graphs
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2444 - 2455
  • [38] On the structure of arbitrarily partitionable graphs with given connectivity
    Baudon, Olivier
    Foucaud, Florent
    Przybylo, Jakub
    Wozniak, Mariusz
    DISCRETE APPLIED MATHEMATICS, 2014, 162 : 381 - 385
  • [39] On Local Connectivity of Graphs with Given Clique Number
    holtkamp, Andreas
    Volkmann, Lutz
    JOURNAL OF GRAPH THEORY, 2010, 63 (03) : 192 - 197
  • [40] The Algebraic Connectivity of Graphs with Given Matching Number
    Zhu, Bao-Xuan
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1989 - 1995