FAILURE PROBABILITY AND AVERAGE STRENGTH OF DISORDERED-SYSTEMS

被引:35
作者
DUXBURY, PM
LEATH, PL
机构
[1] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, INST FESTKORPERFORSCH, D-52425 JULICH, GERMANY
[2] RUTGERS STATE UNIV, DEPT PHYS & ASTRON, PISCATAWAY, NJ 08855 USA
[3] MSU, DEPT PHYS & ASTRON, E LANSING, MI 48824 USA
[4] MSU, CFMR, E LANSING, MI 48824 USA
关键词
D O I
10.1103/PhysRevLett.72.2805
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using a new recurrence-relation method, we have calculated the failure probability and average strength of random systems of up to linear dimension L = 5000. We find a deep minimum in the failure probability at an optimal sample size (L0). As the applied stress decreases the depth of this minimum grows exponentially and L0 increases algebraically. At large sample sizes the average strength exhibits a logarithmic size effect, in contrast to recent suggestions of algebraic scaling in related models.
引用
收藏
页码:2805 / 2808
页数:4
相关论文
共 14 条
[1]   PHASE SLIPS AND THE INSTABILITY OF THE FUKUYAMA-LEE-RICE MODEL OF CHARGE-DENSITY WAVES [J].
COPPERSMITH, SN .
PHYSICAL REVIEW LETTERS, 1990, 65 (08) :1044-1047
[2]   ANALYTIC MODEL FOR SCALING OF BREAKDOWN [J].
CURTIN, WA ;
SCHER, H .
PHYSICAL REVIEW LETTERS, 1991, 67 (18) :2457-2460
[3]   SCALING AND MULTISCALING LAWS IN RANDOM FUSE NETWORKS [J].
DE ARCANGELIS, L ;
HERRMANN, HJ .
PHYSICAL REVIEW B, 1989, 39 (04) :2678-2684
[4]   RANDOM FUSE MODEL FOR BREAKING PROCESSES. [J].
de Arcangelis, L. ;
Redner, S. .
Journal de physique. Lettres, 1985, 46 (13) :585-590
[5]   SIZE EFFECTS OF ELECTRICAL BREAKDOWN IN QUENCHED RANDOM-MEDIA [J].
DUXBURY, PM ;
BEALE, PD ;
LEATH, PL .
PHYSICAL REVIEW LETTERS, 1986, 57 (08) :1052-1055
[6]  
DUXBURY PM, 1991, MATER RES SOC SYMP P, V207, P179
[7]   BREAKDOWN PROPERTIES OF QUENCHED RANDOM-SYSTEMS - THE RANDOM-FUSE NETWORK [J].
DUXBURY, PM ;
LEATH, PL ;
BEALE, PD .
PHYSICAL REVIEW B, 1987, 36 (01) :367-380
[8]   RUPTURE OF CENTRAL-FORCE LATTICES [J].
HANSEN, A ;
ROUX, S ;
HERRMANN, HJ .
JOURNAL DE PHYSIQUE, 1989, 50 (07) :733-744
[9]   PROBABILITY DISTRIBUTIONS FOR THE STRENGTH OF COMPOSITE MATERIALS - 2. A CONVERGENT CONSEQUENCE OF TIGHT BOUNDS. [J].
Harlow, D.G. ;
Phoenix, S.L. .
International Journal of Fracture, 1981, 17 (06) :601-630
[10]   FRACTURE OF DISORDERED, ELASTIC LATTICES IN 2 DIMENSIONS [J].
HERRMANN, HJ ;
HANSEN, A ;
ROUX, S .
PHYSICAL REVIEW B, 1989, 39 (01) :637-648