INVARIANT SUBSPACE METHOD FOR EIGENVALUE COMPUTATION

被引:4
作者
STADNICKI, DJ [1 ]
VANNESS, JE [1 ]
机构
[1] NORTHWESTERN UNIV,EVANSTON,IL 60201
基金
美国国家科学基金会;
关键词
EIGENVALUES; INVARIANT SUBSPACE; DYNAMIC SYSTEM;
D O I
10.1109/59.260825
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The dynamic system being studied is first divided into subsystems with each subsystem representing some physical part of the total system. The eigenvalues and eigenvectors of the subsystems are computed using standard library routines. The change in the eigenvalues between the subsystems and the total system caused by the interconnection between the subsystems is found using a method based on invariant subspaces. The greatest change occurs in the global eigenvalues, those which influence the response of more than one of the subsystems. These eigenvalues are of particular interest as they are the type that could cause interarea oscillations.
引用
收藏
页码:572 / 580
页数:9
相关论文
共 16 条
[1]  
Anderson P. M., 1990, SUBSYNCHRONOUS RESON
[2]  
DONGARRA JJ, 1983, SIAM J NUMERICAL ANA, V20
[3]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[4]  
MARTINS N, 1986, IEEE T POWER SYSTEMS, V1
[5]  
PEREZARRIAGA IJ, 1982, IEEE T POWER APPARAT, V101
[6]  
PIWKO RJ, 1991, IEEE T POWER SYSTEMS, V6
[7]  
SEMLYN A, 1988, IEEE T POWER SYSTEMS, V3
[8]  
Smith BT., 2013, MATRIX EIGENSYSTEM R
[9]  
STADNICKI D, 1991, THESIS NW U EVANSTON
[10]  
UCHIDA N, 1988, IEEE T POWER SYSTEMS, V3