LIPSCHITZ SPECTRUM PRESERVING MAPPINGS ON ALGEBRAS OF MATRICES

被引:10
作者
MRCUN, J
机构
[1] University of Ljubljana Institute of Mathematics
关键词
D O I
10.1016/0024-3795(93)00078-E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that for any Lipschitz mapping T on the algebra M(n) of n x n matrices over the complex numbers satisfying T(0) = 0 and sigma(T(A) - T(B)) subset of sigma(A - B),A,B is an element of M(n), there exists an invertible matrix U is an element of M(n) such that T(A) = UAU(-1) for all A is an element of M(n) or T(A) = UA(t)U(-1) for all A is an element of M(n).
引用
收藏
页码:113 / 120
页数:8
相关论文
共 4 条
[1]   A CHARACTERIZATION OF MULTIPLICATIVE LINEAR FUNCTIONALS IN BANACH ALGEBRAS [J].
KOWALSKI, S ;
SLODKOWSKI, Z .
STUDIA MATHEMATICA, 1980, 67 (03) :215-223
[2]  
Marcus M, 1959, CAN J MATH, V11, P61, DOI 10.4153/CJM-1959-008-0
[3]  
Marcus M., 1959, CAN J MATH, V11, P383
[4]  
ZIMER WP, 1989, WEAKLY DIFFERENTIABL