DIAGONALLY IMPLICIT GENERAL LINEAR METHODS FOR ORDINARY DIFFERENTIAL-EQUATIONS

被引:65
作者
BUTCHER, JC
JACKIEWICZ, Z
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
[2] UNIV AUCKLAND,DEPT MATH & STAT,AUCKLAND,NEW ZEALAND
来源
BIT | 1993年 / 33卷 / 03期
关键词
GENERAL LINEAR METHOD; ORDER CONDITIONS; STABILITY ANALYSIS;
D O I
10.1007/BF01990528
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigate some classes of general linear methods with s internal and r external approximations, with stage order q and order p, adjacent to the class with s = r = q = p considered by Butcher. We demonstrate that interesting methods exist also if s + 1 = r = q, p = q or q + 1, s = r + 1 = q, p = q or q + 1, and s = r = q, p = q + 1. Examples of such methods are constructed with stability function matching the A-acceptable generalized Pade approximations to the exponential function.
引用
收藏
页码:452 / 472
页数:21
相关论文
共 11 条
[1]  
Butcher J. C, 1987, NUMERICAL ANAL ORDIN
[3]   GENERALIZED PADE APPROXIMATIONS TO THE EXPONENTIAL FUNCTION [J].
BUTCHER, JC ;
CHIPMAN, FH .
BIT, 1992, 32 (01) :118-130
[4]  
BUTCHER JC, IN PRESS APPL NUMER
[5]  
BUTCHER JC, UNPUB GENERAL LINEAR
[6]   PSEUDO-RUNGE-KUTTA METHODS INVOLVING 2 POINTS [J].
BYRNE, GD ;
LAMBERT, RJ .
JOURNAL OF THE ACM, 1966, 13 (01) :114-&
[7]  
Gear W.C., 1965, J SIAM NUMER ANAL, V2, P69
[8]  
GRAGG WB, 1965, J ASSOC COMPUT MACH, V11, P188
[9]  
HEARD AD, 1978, THESIS U AUCKLAND
[10]   VARIABLE-STEPSIZE EXPLICIT 2-STEP RUNGE-KUTTA METHODS [J].
JACKIEWICZ, Z ;
ZENNARO, M .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :421-438