PENCILS OF COMPLEX AND REAL SYMMETRICAL AND SKEW MATRICES

被引:145
作者
THOMPSON, RC
机构
[1] Department of Mathematics University of California, Santa Barbara
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(91)90238-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This expository paper establishes the canonical forms under congruence for pairs of complex or real symmetric or skew matrices. The treatment is in the spirit of the well-known book of Gantmacher on matrix theory, and may be regarded as a supplement to Gantmacher's chapters on pencils of matrices.
引用
收藏
页码:323 / 371
页数:49
相关论文
共 230 条
[11]  
BALLANTINE CS, 1976, LINEAR MULTILINEAR A, V4, P61
[12]   UPPER EIGENVALUE BOUNDS FOR PENCILS OF MATRICES [J].
BEAUWENS, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 62 (NOV) :87-104
[13]   AN IMPROVED ALGORITHM FOR THE COMPUTATION OF KRONECKER CANONICAL FORM OF A SINGULAR PENCIL [J].
BEELEN, T ;
VANDOOREN, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 105 :9-65
[14]  
BEELEN T, 1987, NEW ALGORITHMS COMPU
[15]   ON SIMULTANEOUS DIAGONALIZATION OF ONE HERMITIAN AND ONE SYMMETRIC FORM [J].
BENEDETTI, R ;
CRAGNOLINI, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 57 (FEB) :215-226
[16]   PENCILS OF HERMITIAN OR SYMMETRIC MATRICES [J].
BERMAN, A ;
BENISRAE.A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (01) :51-&
[17]   THE INERTIA OF A HERMITIAN PENCIL [J].
BINDING, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 63 (DEC) :179-191
[18]   A CANONICAL FORM FOR SELF-ADJOINT PENCILS IN HILBERT-SPACE [J].
BINDING, P .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1989, 12 (03) :324-342
[19]  
BOCHER M, 1964, INTRO HIGHER ALGEBRA, P303
[20]  
BOGNAR J, 1974, ERGEB MATH, V78