PENCILS OF COMPLEX AND REAL SYMMETRICAL AND SKEW MATRICES

被引:145
作者
THOMPSON, RC
机构
[1] Department of Mathematics University of California, Santa Barbara
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(91)90238-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This expository paper establishes the canonical forms under congruence for pairs of complex or real symmetric or skew matrices. The treatment is in the spirit of the well-known book of Gantmacher on matrix theory, and may be regarded as a supplement to Gantmacher's chapters on pencils of matrices.
引用
收藏
页码:323 / 371
页数:49
相关论文
共 230 条
[1]  
AITKEN AC, 1933, Q J MATH OXFORD, V4, P241
[2]   Symmetric and alternate matrices in an arbitrary field, I [J].
Albert, A. Adrian .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :386-436
[3]  
[Anonymous], 1937, COMMENT MATH HELV
[4]  
Au-Yeung Y.-H., 1974, LINEAR MULTILINEAR A, V2, P249, DOI [10.1080/03081087408817067, DOI 10.1080/03081087408817067]
[7]  
AUYEUNG YH, 1971, PROC CAMB PHILOS S-M, V70, P383
[9]   SEMI-DEFINITENESS OF REAL PENCIL OF 2 HERMITIAN MATRICES [J].
AUYEUNG, YH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (01) :71-76
[10]  
AUYEUNG YH, 1971, GLASNIK MAT, V6, P3