COMMON CYCLIC ENTIRE-FUNCTIONS FOR PARTIAL-DIFFERENTIAL OPERATORS

被引:12
作者
CHAN, KC [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT MATH,E LANSING,MI 48824
关键词
D O I
10.1007/BF01195296
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H(ℂN) denote the Fréchet space of all entire functions of N variables (N≥1). The purpose of this paper is to prove the existence of a dense set of functions f in H(ℂN) such that if L is any nonscalar linear differential operator with constant coefficients, then the set {p(L)f:p(·) is a polynomial} is dense in H(ℂN). © 1990 Birkhäuser Verlag.
引用
收藏
页码:132 / 137
页数:6
相关论文
共 5 条
[1]  
CHAN KC, IN PRESS INDIANA U M
[2]   UNIVERSAL VECTORS FOR OPERATORS ON SPACES OF HOLOMORPHIC-FUNCTIONS [J].
GETHNER, RM ;
SHAPIRO, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (02) :281-288
[3]  
GODEFROY G, OPERATORS DENSE INVA
[4]  
MacLane G.R., 1952, J ANAL MATH, V2, P72
[5]   SOME OPERATORS WITH CYCLIC VECTORS [J].
WOGEN, WR .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1978, 27 (01) :163-171