AVERAGE COST OF DUVALS ALGORITHM FOR GENERATING LYNDON WORDS

被引:16
作者
BERSTEL, J [1 ]
POCCHIOLA, M [1 ]
机构
[1] ECOLE NORMALE SUPER,LIENS,CNRS,URA 1327,F-75230 PARIS 05,FRANCE
关键词
D O I
10.1016/0304-3975(94)00013-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The average cost of Duval's algorithm for generating all Lyndon words up to a given length in lexicographic order is proved to be asymptotically equal to (q + 1)/(q - 1), where q is the size of the underlying alphabet. In particular, the average cost is independent of the length of the words generated. A precise evaluation of the constants is also given.
引用
收藏
页码:415 / 425
页数:11
相关论文
共 15 条
[1]   LEXICOGRAPHICALLY LEAST CIRCULAR SUBSTRINGS [J].
BOOTH, KS .
INFORMATION PROCESSING LETTERS, 1980, 10 (4-5) :240-242
[2]  
CHAR BW, 1991, MAPLE 5 LANGUAGE REF
[3]  
DUVAL JP, 1983, J ALGORITHM, V4, P363, DOI 10.1016/0196-6774(83)90017-2
[4]   GENERATION OF A SECTION OF CONJUGATION CLASSES AND A TREE OF LYNDON WORDS OF LIMITED LENGTH [J].
DUVAL, JP .
THEORETICAL COMPUTER SCIENCE, 1988, 60 (03) :255-283
[5]   SINGULARITY ANALYSIS OF GENERATING-FUNCTIONS [J].
FLAJOLET, P ;
ODLYZKO, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (02) :216-240
[6]  
Lidl R., 1984, FINITE FIELDS
[7]  
Lothaire M., 1983, COMBINATORICS WORDS
[8]   ON BURNSIDES PROBLEM [J].
LYNDON, RC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 77 (SEP) :202-215
[9]  
Reutenauer C., 1993, FREE LIE ALGEBRAS
[10]   GENERATING NECKLACES [J].
RUSKEY, F ;
SAVAGE, C ;
WANG, TMY .
JOURNAL OF ALGORITHMS, 1992, 13 (03) :414-430