SIOBHAN PROBLEM - THE COUPON COLLECTOR REVISITED

被引:33
作者
DAWKINS, B
机构
关键词
EMPIRICAL ASYMPTOTIC CONVERGENCE; ESTIMATING POPULATION SIZE; DECIMAL EXPANSION OF PI AND EPSILON TESTING RANDOMNESS;
D O I
10.2307/2685247
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers from an empirical point of view the convergence of the distribution function for the waiting time in the classical coupon collector's problem. In addition, the application of the distribution in testing for "randomness" in the decimal expansions of pi and e is considered. Some remarks are also made on the inverse problems: namely, given iota distinct objects obtained in sampling at random with replacement m times from some population, how many distinct objects are there in the population?
引用
收藏
页码:76 / 82
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1970, HDB MATH FNCTIONS
[2]  
[Anonymous], 1968, INTRO PROBABILITY TH
[3]   ASYMPTOTIC DISTRIBUTIONS FOR THE COUPON COLLECTORS PROBLEM [J].
BAUM, LE ;
BILLINGSLEY, P .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (06) :1835-1839
[4]  
Blower JG, 1981, ESTIMATING SIZE ANIM
[5]  
METROPOLIS NC, 1950, MATH COMPUT, V4, P109
[6]  
Mosteller F., 1987, 50 CHALLENGING PROBL
[7]  
Press W.H., 1994, NUMERICAL RECIPES C, V2nd ed.
[8]  
RAYNER JC, 1989, NZ STATISTICIAN, V24, P22
[9]  
Riordan J., 1958, INTRO COMBINATORIAL
[10]   ASYMPTOTIC NORMALITY IN A COUPON COLLECTORS PROBLEM [J].
ROSEN, B .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (3-4) :256-&