FORMATION AND STABILITY OF HIGHER-ORDER CHROMATIN STRUCTURES - CONTRIBUTIONS OF THE HISTONE OCTAMER

被引:0
作者
SCHWARZ, PM [1 ]
HANSEN, JC [1 ]
机构
[1] UNIV TEXAS,HLTH SCI CTR,DEPT BIOCHEM,SAN ANTONIO,TX 78284
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Unique roles have been identified for the histone octamer in the formation and stabilization of higher order chromatin structures. Histone octamers were assembled onto 12 tandem repeats of Lytechinus 5 S rDNA, at either saturating or subsaturating ratios. The extent of oligonucleosome folding and intermolecular association in divalent salts was monitored using analytical and differential sedimentation techniques. Saturated oligonucleosomes (12 nucleosomes/DNA) sedimented at 29 S in very low salt buffer. In 1.0-2.0 mM MgCl2, saturated oligonucleosomes formed a maximally folded 55 S structure whose extent of compaction was equivalent to that of classical higher order 30-nm diameter chromatin structures. These results are in marked contrast to those obtained previously in NaCl, where the maximally folded oligonucleosome species sedimented at only similar to 40 S (Hansen, J.C., Ausio, J., Stanik, V.H., and van Holde, K.E. (1989) Biochemistry 28, 9129-9136). Mg2+-dependent formation of the 55 S conformation was inhibited by histone octamer depletion; the maximum sedimentation coefficient observed for rDNA molecules containing 10-11 nucleosomes in 2.0 mM MgCl2 was only 40 S. Above 2.0 mM MgCl2, the equilibrium was progressively shifted toward formation of large associated oligonucleosome species. The implications of these results to the mechanism of chromatin folding and its relationship to the biological activity of the chromatin fiber are discussed.
引用
收藏
页码:16284 / 16289
页数:6
相关论文
共 75 条
[1]   REGULATION OF THE HIGHER-ORDER STRUCTURE OF CHROMATIN BY HISTONES-H1 AND HISTONES-H5 [J].
ALLAN, J ;
COWLING, GJ ;
HARBORNE, N ;
CATTINI, P ;
CRAIGIE, R ;
GOULD, H .
JOURNAL OF CELL BIOLOGY, 1981, 90 (02) :279-288
[2]   PARTICIPATION OF CORE HISTONE TAILS IN THE STABILIZATION OF THE CHROMATIN SOLENOID [J].
ALLAN, J ;
HARBORNE, N ;
RAU, DC ;
GOULD, H .
JOURNAL OF CELL BIOLOGY, 1982, 93 (02) :285-297
[3]   BIOCHEMICAL AND PHYSIOCHEMICAL CHARACTERIZATION OF CHROMATIN FRACTIONS WITH DIFFERENT DEGREES OF SOLUBILITY ISOLATED FROM CHICKEN ERYTHROCYTE NUCLEI [J].
AUSIO, J ;
SASI, R ;
FASMAN, GD .
BIOCHEMISTRY, 1986, 25 (08) :1981-1988
[4]   EUKARYOTIC RNA POLYMERASE-II BINDS TO NUCLEOSOME CORES FROM TRANSCRIBED GENES [J].
BAER, BW ;
RHODES, D .
NATURE, 1983, 301 (5900) :482-488
[5]   FRICTIONAL COEFFICIENTS OF MULTISUBUNIT STRUCTURES .1. THEORY [J].
BLOOMFIE.V ;
DALTON, WO ;
VANHOLDE, KE .
BIOPOLYMERS, 1967, 5 (02) :135-&
[6]   INTERACTION AND CONFORMATIONAL-CHANGES OF CHROMATIN WITH DIVALENT IONS [J].
BOROCHOV, N ;
AUSIO, J ;
EISENBERG, H .
NUCLEIC ACIDS RESEARCH, 1984, 12 (07) :3089-3096
[7]   THE TRANSCRIPTIONALLY-ACTIVE MMTV PROMOTER IS DEPLETED OF HISTONE H1 [J].
BRESNICK, EH ;
BUSTIN, M ;
MARSAUD, V ;
RICHARDFOY, H ;
HAGER, GL .
NUCLEIC ACIDS RESEARCH, 1992, 20 (02) :273-278
[8]   CHANGES IN CHROMATIN FOLDING IN SOLUTION [J].
BUTLER, PJG ;
THOMAS, JO .
JOURNAL OF MOLECULAR BIOLOGY, 1980, 140 (04) :505-529
[9]   ORGANIZATION OF SUBUNITS IN CHROMATIN [J].
CARPENTER, BG ;
BALDWIN, JP ;
BRADBURY, EM ;
IBEL, K .
NUCLEIC ACIDS RESEARCH, 1976, 3 (07) :1739-1746
[10]   CHROMOSOMAL ORGANIZATION OF XENOPUS-LAEVIS OOCYTE AND SOMATIC 5S RIBOSOMAL-RNA GENES INVIVO [J].
CHIPEV, CC ;
WOLFFE, AP .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (01) :45-55