INTEGRAL EQUATIONS WITH SUBSTOCHASTIC KERNELS

被引:0
作者
Barseghyan, A. G. [1 ]
机构
[1] Natl Acad Sci Armenia, Inst Math, Methods Math Phys, 24-5 Marshal Baghramian Ave, Yerevan 0019, Armenia
来源
EURASIAN MATHEMATICAL JOURNAL | 2014年 / 5卷 / 04期
关键词
substochastic kernel; solution of homogeneous and non-homogeneous equations; functional of dissipation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The non-homogeneous or homogeneous integral equation of the second kind with a substochastic kernel W(x, t) = K(x-t)+ T(x, t) is considered on the semi axis, where K is the density of distribution of some variate, and T >= 0 satisfies the condition lambda(t) = integral(infinity)(-t) K (y) dy + integral T-infinity(0) (x, t) dx < 1, sup lambda (t) = 1. The existence of a minimal positive solution of the non-homogeneous equation is proved. The existence of a positive solution of the homogeneous equation is also proved under some simple additional conditions. The results may be applied to the study of Random Walk on the semi axis with the reflection at the boundary.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 9 条
[1]  
ANDRIYAN SM, 2005, COMP MATH MATH PHYS, V45, P1982
[2]  
[Барсегян Ани Гарниковна Barseghyan Ani Garnikovna], 2012, [Теория вероятностей и ее применения, Theory of Probability and its Applications, Teoriya veroyatnostei i ee primeneniya], V57, P155, DOI 10.4213/tvp4436
[3]  
Casti J., 1973, SERIES APPL MATH COM
[4]  
Cercingnani C., 1975, THEORY APPL BOLTZMAN
[5]   On the fixed points of monotonic operators in the critical case [J].
Engibaryan, N. B. .
IZVESTIYA MATHEMATICS, 2006, 70 (05) :931-947
[7]   THE THEORY OF QUEUES WITH A SINGLE SERVER [J].
LINDLEY, DV .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1952, 48 (02) :277-289
[8]   THE WIENER-HOPF EQUATION WHOSE KERNEL IS A PROBABILITY DENSITY [J].
SPITZER, F .
DUKE MATHEMATICAL JOURNAL, 1957, 24 (03) :327-343
[9]  
Wiener N, 1931, SITZBER PREUSS AKAD, P696