Optimal Tuning of Decentralized PI Controller of Nonlinear Multivariable Process Using Archival Based Multiobjective Particle Swarm Optimization

被引:2
|
作者
Kotteeswaran, R. [1 ]
Sivakumar, L. [2 ]
机构
[1] St Josephs Coll Engn, Dept Instrumentat & Control Engn, Chennai 600119, Tamil Nadu, India
[2] Sri Krishna Coll Engn & Technol, Elect Sci, Coimbatore 641008, Tamil Nadu, India
关键词
D O I
10.1155/2014/504706
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Multiobjective Particle Swarm Optimization (MOPSO) algorithm is proposed to fine-tune the baseline PI controller parameters of Alstom gasifier. The existing baseline PI controller is not able to meet the performance requirements of Alstom gasifier for sinusoidal pressure disturbance at 0% load. This is considered the major drawback of controller design. A best optimal solution for Alstom gasifier is obtained from a set of nondominated solutions using MOPSO algorithm. Performance of gasifier is investigated at all load conditions. The controller with optimized controller parameters meets all the performance requirements at 0%, 50%, and 100% load conditions. The investigations are also extended for variations in coal quality, which shows an improved stability of the gasifier over a wide range of coal quality variations.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] A multiobjective tuning approach of power system stabilizers using particle swarm optimization
    Labdelaoui, Hilal
    Boudjema, Fares
    Boukhetala, Djamel
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2016, 24 (05) : 3898 - U1624
  • [22] Normalized Normal Constraint Algorithm Based Multi-objective Optimal Tuning of Decentralised PI Controller of Nonlinear Multivariable Process - Coal Gasifier
    Kotteeswaran, Rangasamy
    Sivakumar, Lingappan
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I (SEMCCO 2013), 2013, 8297 : 333 - 344
  • [23] PARTICLE SWARM OPTIMIZATION BASED OPTIMAL PID CONTROLLER FOR QUADCOPTERS
    Sonugur, Guray
    Gokce, Celal Onur
    Koca, Yavuz Bahadir
    Inci, Seyket Semih
    Keles, Zeynep
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (12): : 1806 - 1814
  • [24] Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm
    Pawar, P. J.
    Rao, R. V.
    Davim, J. P.
    MATERIALS AND MANUFACTURING PROCESSES, 2010, 25 (06) : 424 - 431
  • [25] Optimal Tuning Of PID Controller For Switched Reluctance Motor Speed Control Using Particle Swarm Optimization
    Nimisha, K. K.
    Senthilkumar, R.
    2018 INTERNATIONAL CONFERENCE ON CONTROL, POWER, COMMUNICATION AND COMPUTING TECHNOLOGIES (ICCPCCT), 2018, : 487 - 491
  • [26] Robust PID controller tuning based on the constrained particle swarm optimization
    Kim, Tae-Hyoung
    Maruta, Ichiro
    Sugie, Toshiharu
    AUTOMATICA, 2008, 44 (04) : 1104 - 1110
  • [27] Tuning of PID controller based on improved particle-swarm-optimization
    Yang, Zhi
    Chen, Zhi-Tang
    Fan, Zheng-Ping
    Li, Xiao-Dong
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2010, 27 (10): : 1345 - 1352
  • [28] PSS Design Based on Fuzzy Controller with Particle Swarm Optimization Tuning
    Hakim, Ermanu A.
    Kasan, Nur
    Nurhadi
    2018 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTER SCIENCE AND INFORMATICS (EECSI 2018), 2018, : 432 - 435
  • [29] Knowledge-based Particle Swarm Optimization for PID Controller Tuning
    Chen, Junfeng
    Omidvar, Mohammad Nabi
    Azad, Morteza
    Yao, Xin
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1819 - 1826
  • [30] Particle swarm optimization based robust PID controller tuning scheme
    Kim, Tae-Hyoung
    Maruta, Ichiro
    Sugie, Toshiharu
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 735 - 740