HARDY-SPACES AND OSCILLATORY SINGULAR-INTEGRALS .2.

被引:4
作者
PAN, YB
机构
[1] University Of Pittsburgh, Pittsburgh, PA
关键词
D O I
10.2140/pjm.1995.168.167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider oscillatory singular integral operators with real-analytic phases. The uniform boundedness from H-E(1) --> L(1) of such operators is proved, where H-E(1) is a variant of the standard Hardy space H-1. The result is false for general C-infinity phases. This work is a continuation of earlier work by Phong and Stein (on bilinear phases) and the author (on polynomial phases).
引用
收藏
页码:167 / 182
页数:16
相关论文
共 12 条
[1]   WEAK (1,1) BOUNDS FOR OSCILLATORY SINGULAR-INTEGRALS [J].
CHANILLO, S ;
CHRIST, M .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (01) :141-155
[2]  
Hormander L, 1986, ANAL LINEAR PARTIAL, V1
[3]   HILBERT TRANSFORMS ASSOCIATED WITH PLANE CURVES [J].
NAGEL, A ;
WAINGER, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 223 (OCT) :235-252
[4]   UNIFORM ESTIMATES FOR OSCILLATORY INTEGRAL-OPERATORS [J].
PAN, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :207-220
[5]  
Pan Y., 1991, REV MAT IBERO, V7, P55
[7]  
PAN YB, 1994, P AM MATH SOC, V120, P789
[8]  
PHONG DH, 1987, ACTA MATH, V57, P179
[9]   HARMONIC-ANALYSIS ON NILPOTENT GROUPS AND SINGULAR-INTEGRALS .1. OSCILLATORY INTEGRALS [J].
RICCI, F ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 73 (01) :179-194
[10]  
STEIN E. M., 1971, INTRO FOURIER ANAL E