ON LYAPUNOV CONTROL OF THE DUFFING EQUATION

被引:132
作者
NIJMEIJER, H [1 ]
BERGHUIS, H [1 ]
机构
[1] HOLLANDSE SIGNAALAPPARATEN BV,DEPT RDT,R&S,MFE,SER,7550 GD HENGELO,NETHERLANDS
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1995年 / 42卷 / 08期
关键词
D O I
10.1109/81.404059
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this brief, we develop feedback control strategies for a chaotic dynamic system such as the Duffing equation. Our controllers are of the so-called Lyapunov-type and are inspired by robot manipulator feedback controls. The different controllers we propose include observer-based controllers that even can cope with parametric uncertainties of the original system. Some simulation examples support the developed methods.
引用
收藏
页码:473 / 477
页数:5
相关论文
共 20 条
[1]  
Berghuis H., 1993, IEEE T ROBOTIC AUTOM, V9, P940
[2]  
BERGHUIS H, 1993, THESIS U TWENTE ENSC
[3]  
CHEN G, 1994, CONSTROL SYNCHRONIZA
[4]   ON FEEDBACK-CONTROL OF CHAOTIC CONTINUOUS-TIME SYSTEMS [J].
CHEN, GR ;
DONG, XN .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (09) :591-601
[5]   FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS [J].
Chen, Guanrong ;
Dong, Xiaoning .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1363-1409
[6]   CONTROLS OF DYNAMIC FLOWS WITH ATTRACTORS [J].
JACKSON, EA .
PHYSICAL REVIEW A, 1991, 44 (08) :4839-4853
[7]  
JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
[8]  
Khalil H.K., 1992, NONLINEAR SYSTEMS
[9]  
KODITSCHEK D, 1989, ROBOTICS REV, V1, P349
[10]  
Nijmeijer H., 1990, NONLINEAR DYNAMICAL