BEAM SELF-FOCUSING IN THE PRESENCE OF A SMALL NORMAL TIME DISPERSION

被引:53
作者
FIBICH, G
MALKIN, VM
PAPANICOLAOU, GC
机构
[1] NYU, COURANT INST, NEW YORK, NY 10012 USA
[2] STANFORD UNIV, DEPT MATH, STANFORD, CA 94305 USA
来源
PHYSICAL REVIEW A | 1995年 / 52卷 / 05期
关键词
D O I
10.1103/PhysRevA.52.4218
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a system of modulation equations that approximate the focusing of the nonlinear Schrodinger equation in the presence of a small normal time dispersion (TDNLS). Since the modulation equations are much easier for analysis and for numerical simulations, they can be used to get a general picture of the TDNLS focusing. Analytical and numerical agreement between the modulation equations and the TDNLS is established.
引用
收藏
页码:4218 / 4228
页数:11
相关论文
共 24 条
[1]  
Ablowitz M. J., 1991, SOLITONS NONLINEAR E, V149
[2]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[3]   GENERATION OF A TRAIN OF 3-DIMENSIONAL OPTICAL SOLITONS IN A SELF-FOCUSING MEDIUM [J].
AKHMEDIEV, N ;
SOTOCRESPO, JM .
PHYSICAL REVIEW A, 1993, 47 (02) :1358-1364
[4]   FEMTOSECOND LASER TISSUE INTERACTIONS - RETINAL INJURY STUDIES [J].
BIRNGRUBER, R ;
PULIAFITO, CA ;
GAWANDE, A ;
LIN, WZ ;
SCHOENLEIN, RW ;
FUJIMOTO, JG .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1987, 23 (10) :1836-1844
[5]   SELF-FOCUSING OF LIGHT-PULSES IN THE PRESENCE OF NORMAL GROUP-VELOCITY DISPERSION [J].
CHERNEV, P ;
PETROV, V .
OPTICS LETTERS, 1992, 17 (03) :172-174
[6]   BEAM NONPARAXIALITY, FILAMENT FORMATION, AND BEAM BREAKUP IN THE SELF-FOCUSING OF OPTICAL BEAMS [J].
FEIT, MD ;
FLECK, JA .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (03) :633-640
[7]  
FIBICH G, 1994, THESIS NEW YORK U
[8]  
FIBICH G, UNPUB
[9]  
FRAIMAN GM, 1985, ZH EKSP TEOR FIZ, V61, P228
[10]  
Gelfand I. M., 1963, CALCULUS VARIATIONS