MOLECULAR CHARACTERIZATION OF HES-2, A MAMMALIAN HELIX-LOOP-HELIX FACTOR STRUCTURALLY RELATED TO DROSOPHILA-HAIRY AND ENHANCER OF SPLIT

被引:82
作者
ISHIBASHI, M
SASAI, Y
NAKANISHI, S
KAGEYAMA, R
机构
[1] KYOTO UNIV,FAC MED,INST IMMUNOL,YOSHIDA,SAKYO KU,KYOTO 606,JAPAN
[2] KYOTO UNIV,FAC MED,DEPT ANAT,KYOTO 606,JAPAN
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 1993年 / 215卷 / 03期
关键词
D O I
10.1111/j.1432-1033.1993.tb18075.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drosophila hairy (h) plays a crucial role in early development as a pair-rule segmentation gene. h and its structurally related gene Enhancer of split [E(spl)] are also required for normal sensory neurogenesis in late development. To analyze the molecular mechanisms of mammalian development, we recently characterized three rat helix-loop-helix (HLH) factors that show structural homology to the Drosophila h and E(spl) gene products, and found that rat factors exhibit distinct spatio-temporal expression patterns and act as a negative regulator. Here, we report the molecular characterization of another member of this family, designated HES-2. Rat HES-2 protein has a basic HLH domain homologous to h and E(spl) as well as the carboxy-terminal Trp-Arg-Pro-Trp sequence conserved among this family. The HES-2 mRNA is present as early as embryonic day 9.5 and is detected in a variety of tissues of both embryos and adults. DNase-I-footprinting analyses indicate that HES-2 binds to all E box sequences (CANNTG) we tested as well as to the N-box sequences (CACNAG). Further studies of gel-mobility-shift assays show that HES-2 has a higher affinity for the E box than for the N box. Transient transfection analyses suggest that HES-2 decreases the transcription originating from the promoters containing either the E box or the N box. These results indicate that HES-2 acts as a negative regulator through interaction with both E-box and N-box sequences.
引用
收藏
页码:645 / 652
页数:8
相关论文
共 27 条
[1]  
AKAZAWA C, 1992, J BIOL CHEM, V267, P21879
[2]   THE PROTEIN ID - A NEGATIVE REGULATOR OF HELIX-LOOP-HELIX DNA-BINDING PROTEINS [J].
BENEZRA, R ;
DAVIS, RL ;
LOCKSHON, D ;
TURNER, DL ;
WEINTRAUB, H .
CELL, 1990, 61 (01) :49-59
[3]   DIFFERENCES AND SIMILARITIES IN DNA-BINDING PREFERENCES OF MYOD AND E2A PROTEIN COMPLEXES REVEALED BY BINDING-SITE SELECTION [J].
BLACKWELL, TK ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1104-1110
[4]   SEQUENCE-SPECIFIC DNA-BINDING BY THE C-MYC PROTEIN [J].
BLACKWELL, TK ;
KRETZNER, L ;
BLACKWOOD, EM ;
EISENMAN, RN ;
WEINTRAUB, H .
SCIENCE, 1990, 250 (4984) :1149-1151
[5]   MAX - A HELIX-LOOP-HELIX ZIPPER PROTEIN THAT FORMS A SEQUENCE-SPECIFIC DNA-BINDING COMPLEX WITH MYC [J].
BLACKWOOD, EM ;
EISENMAN, RN .
SCIENCE, 1991, 251 (4998) :1211-1217
[6]   HEN1 AND HEN2 - A SUBGROUP OF BASIC HELIX LOOP HELIX GENES THAT ARE COEXPRESSED IN A HUMAN NEUROBLASTOMA [J].
BROWN, L ;
ESPINOSA, R ;
LEBEAU, MM ;
SICILIANO, MJ ;
BAER, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (18) :8492-8496
[7]   EXPRESSION OF A SINGLE TRANSFECTED CDNA CONVERTS FIBROBLASTS TO MYOBLASTS [J].
DAVIS, RL ;
WEINTRAUB, H ;
LASSAR, AB .
CELL, 1987, 51 (06) :987-1000
[8]   THE MYOD DNA-BINDING DOMAIN CONTAINS A RECOGNITION CODE FOR MUSCLE-SPECIFIC GENE ACTIVATION [J].
DAVIS, RL ;
CHENG, PF ;
LASSAR, AB ;
WEINTRAUB, H .
CELL, 1990, 60 (05) :733-746
[9]  
FUJISAWASEHARA A, 1990, J BIOL CHEM, V265, P15219
[10]   RECOMBINANT GENOMES WHICH EXPRESS CHLORAMPHENICOL ACETYLTRANSFERASE IN MAMMALIAN-CELLS [J].
GORMAN, CM ;
MOFFAT, LF ;
HOWARD, BH .
MOLECULAR AND CELLULAR BIOLOGY, 1982, 2 (09) :1044-1051