THE NEWTON-KANTOROVICH METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS AND THE PTAK ERROR-ESTIMATES

被引:15
作者
ARGYROS, IK
机构
[1] Department of Mathematical Sciences, New Mexico State University, Las Cruces, 88003, NM
来源
MONATSHEFTE FUR MATHEMATIK | 1990年 / 109卷 / 03期
关键词
D O I
10.1007/BF01297759
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Newton-Kantorovich method under mild differentiability conditions. Using Zabrejko-Nguen assumptions we extend the results obtained by Zabrejko and Nguen in [11]. We also derive Ptâk error estimates which compare favorably with the ones obtained previously by Keller [4], Rokne [7], and Argyros in [1]. © 1990 Springer-Verlag.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 11 条
[1]   THE SECANT METHOD AND FIXED-POINTS OF NONLINEAR OPERATORS [J].
ARGYROS, IK .
MONATSHEFTE FUR MATHEMATIK, 1988, 106 (02) :85-94
[2]  
BALAZS M, 1968, STUD CERC MAT, V20, P981
[3]  
KELLER HB, 1965, UNPUB NEWTONS METHOD
[4]   SHARP ERROR-BOUNDS FOR NEWTON PROCESS [J].
POTRA, FA ;
PTAK, V .
NUMERISCHE MATHEMATIK, 1980, 34 (01) :63-72
[5]   A UNIFIED CONVERGENCE THEORY FOR A CLASS OF ITERATIVE PROCESSES [J].
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (01) :42-+
[6]  
ROCKNE J, 1972, NUMER MATH, V18, P401
[7]  
Schmidt J.W., 1978, PERIOD MATH HUNGAR, V9, P241, DOI [10.1007/BF02018090, DOI 10.1007/BF02018090]
[8]   A NOTE ON A POSTERIORI ERROR BOUND OF ZABREJKO AND NGUEN FOR ZINCENKOS ITERATION [J].
YAMAMOTO, T .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (9-10) :987-994
[9]  
YAMAMOTO T, 1986, NUMER MATH, V44, P203
[10]   THE MAJORANT METHOD IN THE THEORY OF NEWTON-KANTOROVICH APPROXIMATIONS AND THE PTAK ERROR-ESTIMATES [J].
ZABREJKO, PP ;
NGUEN, DF .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1987, 9 (5-6) :671-684