ON EXPONENTIAL-SUMS INVOLVING THE RAMANUJAN FUNCTION

被引:31
作者
JUTILA, M [1 ]
机构
[1] UNIV TURKU,DEPT MATH,SF-20500 TURKU 50,FINLAND
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 1987年 / 97卷 / 1-3期
关键词
D O I
10.1007/BF02837820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:157 / 166
页数:10
相关论文
共 8 条
[1]  
Apostol T, 1976, GRADUATE TEXTS MATH
[2]  
DELIGNE P, 1974, I HAUTES ET SCI PUBL, V53, P273
[3]  
JUTILA M, 1985, J REINE ANGEW MATH, V355, P173
[4]  
JUTILA M, 1987, IN PRESS J ARITHM UL
[5]  
JUTILA M, 1987, LECTURES MATH PHYSIC, V80
[6]   EXPONENTIAL-SUMS CONNECTED WITH RAMANUJAN FUNCTION TAU-(N) [J].
PARSON, LA ;
SHEINGORN, M .
MATHEMATIKA, 1982, 29 (58) :270-277
[7]   Contributions to the theory of Ramanujan's function tau-(n) and similar arithmetical functions II. The order of the fourier coefficients of integral modular forms [J].
Rankin, RA ;
Hardy, GH .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1939, 35 :357-372
[8]   A note on Ramanujan's arithmetical function tau(n) [J].
Wilton, JR .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1929, 25 :121-129