STRONG ASYMPTOTIC STABILITY OF LINEAR DYNAMICAL-SYSTEMS IN BANACH-SPACES

被引:58
作者
HUANG, F
机构
[1] Department of Mathematics, Sichuan University, Chengdu, Sichuan
关键词
D O I
10.1006/jdeq.1993.1074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the strong asymptotic stability of linear dynamical systems in Banach spaces. Let A be the infinitesimal generator of a C0-semigroup etA of bounded linear operators in a Banach space X. We first show that if etA is a C0-isometric group, then there exists at least one pure imaginary λ = iβ ∈ σ(A), the spectrum of A, and if etA is only a C0-isometric semigroup, but not a group, then λ ∈ σr(A), the residual spectrum of A, for all λ ∈ C with Re λ < 0. Next, as an application of the above, we show that if etA is uniformly bounded and Re λ < 0 for all λ ∈ σ(A), then etA is strongly asymptotically stable, i.e., ||etAx|| → 0 as t → ∞ for all x ∈ X; conversely, if etA is strongly asymptotically stable, then it is uniformly bounded and Re λ ≤ 0 for all λ ∈ σ(A) and any pure imaginary can be only a continuous spectral point of A. Finally, we consider the C0-semigroup etA associated with linear elastic systems with damping ẅ + Bẇ + Aw = 0 in a Hilbert space H, where AB is the closure of AB = ([formula]). A very general result with regard to strong asymptotic stability of the semigroup etA is obtained. © 1993 Academic Press.
引用
收藏
页码:307 / 324
页数:18
相关论文
共 14 条
[1]   TAUBERIAN-THEOREMS AND STABILITY OF ONE-PARAMETER SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 306 (02) :837-852
[2]  
Barbu, 1976, NONLINEAR SEMIGROUPS
[3]  
Dunford N., 1958, LINEAR OPERATORS 1
[4]   POWERS OF A CONTRACTION IN HILBERT SPACE [J].
FOGUEL, SR .
PACIFIC JOURNAL OF MATHEMATICS, 1963, 13 (02) :551-&
[5]  
HILLE E, 1957, C PUBL AM MATH SOC P
[6]   ON THE MATHEMATICAL-MODEL FOR LINEAR ELASTIC-SYSTEMS WITH ANALYTIC DAMPING [J].
HUANG, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) :714-724
[7]  
Huang F., 1983, KEXUE TONGBAO, V10, P584
[8]  
HUANG FL, 1983, J SICHUAN U, V4, P1
[9]   ASYMPTOTIC STABILITY OF LINEAR-DIFFERENTIAL EQUATIONS IN BANACH-SPACES [J].
LYUBICH, YI ;
PHONG, VQ .
STUDIA MATHEMATICA, 1988, 88 (01) :37-42
[10]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1