Automatic Generation of Merge Factor for Clustering Microarray Data

被引:0
作者
Pavan, K. Karteeka [1 ]
Rao, Allam Appa [2 ]
Rao, A. V. Dattatreya [3 ]
Sridhar, G. R. [4 ]
机构
[1] RVR & JC Coll Engn, Guntur, Andhra Pradesh, India
[2] Jawaharlal Nehru Technol Univ, Kakinada, Andhra Pradesh, India
[3] Acharya Nagarjuna Univ, Guntur, Andhra Pradesh, India
[4] Endocrine & Diabet Ctr, Visakhapatnam, Andhra Pradesh, India
来源
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY | 2008年 / 8卷 / 09期
关键词
Bioinformatics; Microarray gene expression data; coexpressed genes; clustering; K-means; ISODATA; AGMFI;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Microarrays are made it possible to simultaneously monitor the expression profiles of thousands of genes under various experimental conditions. Identification of coexpressed genes and coherent patterns is the central goal in microarray or gene expression data analysis and is an important task in bioinformatics research. Cluster analysis of gene expression data has proved to be a useful tool for identifying coexpressed genes, biologically relevant groupings of genes and samples. In this paper we propose an algorithm -Automatic Generation of Merge Factor for Isodata - AGMFI, to cluster microarray data on the basis of ISODATA. The main idea of AGMFI is to generate initial values for merge factor, maximum merge times instead of selecting heuristic values as in ISODATA. One significant feature of AGMFI over K-means is that the initial number of clusters may be merged or split, and so the final number of clusters may be different from the number of clusters specified as part of the input. We evaluate it's performance by applying on a well-known publicly available microarray data sets and on simulated data set [3]. We compared the results with those of K-means clustering. The experiments indicate that the proposed algorithm AGMFI increased the enrichment of genes of similar function within the cluster.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 50 条
  • [1] Dynamic Algorithm based on split and merge for Data Streams Clustering
    Ounali, Chedi
    Ben Rejab, Fahmi
    Nouira, Kaouther
    JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2018, 13 (04): : 137 - 148
  • [2] Determination of cluster number in clustering microarray data
    Shen, JD
    Chang, SI
    Lee, ES
    Deng, YP
    Brown, SJ
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) : 1172 - 1185
  • [3] An Automatic Merge Technique to Improve the Clustering Quality Performed by LAMDA
    Morales, Luis
    Aguilar, Jose
    IEEE ACCESS, 2020, 8 (08): : 162917 - 162944
  • [4] Analysing microarray expression data through effective clustering
    Masciari, E.
    Mazzeo, G. M.
    Zaniolo, C.
    INFORMATION SCIENCES, 2014, 262 : 32 - 45
  • [5] Finding best algorithmic components for clustering microarray data
    Milan Vukićević
    Kathrin Kirchner
    Boris Delibašić
    Miloš Jovanović
    Johannes Ruhland
    Milija Suknović
    Knowledge and Information Systems, 2013, 35 : 111 - 130
  • [6] Finding best algorithmic components for clustering microarray data
    Vukicevic, Milan
    Kirchner, Kathrin
    Delibasic, Boris
    Jovanovic, Milos
    Ruhland, Johannes
    Suknovic, Milija
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 35 (01) : 111 - 130
  • [7] Clustering Microarray Data using Fuzzy Clustering with Viewpoints
    Karayianni, Katerina N.
    Spyrou, George M.
    Nikita, Konstantina S.
    IEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING, 2012, : 362 - 367
  • [8] A spectral clustering method for microarray data
    Tritchler, D
    Fallah, S
    Beyene, J
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (01) : 63 - 76
  • [9] Fuzzy Types Clustering for Microarray Data
    Kim, Seo Young
    Choi, Tai Myong
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 4, 2005, 4 : 12 - 15
  • [10] Simulated annealing based automatic fuzzy clustering combined with ANN classification for analyzing microarray data
    Maulik, Ujjwal
    Mukhopadhyay, Anirban
    COMPUTERS & OPERATIONS RESEARCH, 2010, 37 (08) : 1369 - 1380