THE BISECTION METHOD IN HIGHER DIMENSIONS

被引:55
作者
WOOD, GR
机构
[1] Mathematics Department, University of Canterbury, Christchurch
关键词
BISECTION; SIMPLEX; GLOBAL OPTIMIZATION; LINEAR CONVERGENCE; ZONOTOPE; TILING;
D O I
10.1007/BF01581205
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Is the familiar bisection method part of some larger scheme? The aim of this paper is to present a natural and useful generalisation of the bisection method to higher dimensions. The algorithm preserves the salient features of the bisection method: it is simple, convergence is assured and linear, and it proceeds via a sequence of brackets whose infinite intersection is the set of points desired. Brackets are unions of similar simplexes. An immediate application is to the global minimisation of a Lipschitz continuous function defined on a compact subset of Euclidean space.
引用
收藏
页码:319 / 337
页数:19
相关论文
共 10 条
[1]   ITERATIVE METHODS FOR THE LOCALIZATION OF THE GLOBAL MAXIMUM [J].
BASSO, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :781-792
[2]  
CHOQUET G, 1969, LECTURES ANAL, V1
[3]  
DENNIS JE, 1983, OPEIMIZATION NONLINE
[4]   A BISECTION METHOD FOR SYSTEMS OF NONLINEAR EQUATIONS [J].
EIGER, A ;
SIKORSKI, K ;
STENGER, F .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1984, 10 (04) :367-377
[5]   SPACE TILING ZONOTOPES [J].
MCMULLEN, P .
MATHEMATIKA, 1975, 22 (44) :202-211
[6]   AN ALGORITHM FOR FINDING THE GLOBAL MAXIMUM OF A MULTIMODAL, MULTIVARIATE FUNCTION [J].
MLADINEO, RH .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :188-200
[7]  
Piyavski S.A., 1972, USSR COMP MATH MATH, V12, P57, DOI DOI 10.1016/0041-5553(72)90115-2
[8]   SEQUENTIAL METHOD SEEKING GLOBAL MAXIMUM OF A FUNCTION [J].
SHUBERT, BO .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (03) :379-&
[9]   MULTIDIMENSIONAL BISECTION APPLIED TO GLOBAL OPTIMIZATION [J].
WOOD, GR .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (6-7) :161-172
[10]   ON COMPUTING THE DISPERSION FUNCTION [J].
WOOD, GR .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 58 (02) :331-350