THE EXISTENCE OF PERIODIC-ORBITS OF THE TENT MAP

被引:7
作者
HEIDEL, J
机构
[1] Department of Mathematics and Computer Science, University of Nebraska at Omaha, Omaha
关键词
D O I
10.1016/0375-9601(90)90738-A
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the tent map Tμ(x) = μx for 0 ≤ x ≤ 1 2 and = μ(1 - x) for 1 2 ≤ x ≤ 1, the μ values are determined for which periodic orbits of each order exist. Except for period 2n orbits which exist for all μ ≥ 1, the Sarkovskii ordering is vividly illustrated. After the μ values for odd periodic orbits are determined, the remaining even periodic orbits are handled by topological conjugacy. © 1990.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 10 条
[1]  
Collet P., 1980, ITERATED MAPS INTERV
[2]  
DERRIDA B, 1979, ANN I H POINCARE, V29, P305
[3]  
Devaney R. L., 1986, INTRO CHAOTIC DYNAMI
[4]   A CARTOON-ASSISTED PROOF OF SARKOWSKII THEOREM [J].
KAPLAN, H .
AMERICAN JOURNAL OF PHYSICS, 1987, 55 (11) :1023-1032
[5]  
KOCAK H, 1986, DIFFERENTIAL DIFFERE
[6]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[7]  
2
[8]  
Louck J. D., 1986, SYMBOLIC DYNAMICS TR
[9]  
Metropolis N., 1973, Journal of Combinatorial Theory, Series A, V15, P25, DOI 10.1016/0097-3165(73)90033-2
[10]  
Schuster HG, 1988, DETERMINISTIC CHAOS, V2nd