ASYMPTOTICS OF EIGENCURVES FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS .1.

被引:37
作者
BINDING, P
BROWNE, PJ
机构
[1] Department of Mathematics and Statistics, University of Calgary, Calgary
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0022-0396(90)90107-Z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The regular two parameter Sturm-Liouville equation -(py′)′ + qy = (λf - μr)y is studied for L1 coefficients with p, r > 0. For each fixed number n of internal zeros of the eigenfunctions y, μ = μn is analytic in λ. Necessary and sufficient conditions (which are in fact independent of n) are given for lim μn gl to exist as λ → ∞ (or -∞). Asymptotic expansions for μn are derived in cases of existence and non-existence of lim μn λ. © 1990.
引用
收藏
页码:30 / 45
页数:16
相关论文
共 16 条
[1]  
Atkinson FV., 1964, DISCRETE CONTINUOUS
[2]  
ATKINSON FV, 1986, J MATH, P330
[3]  
Binding P., 1988, APPL ANAL, V29, P107
[4]  
BINDING PA, IN PRESS J DIFFERENT
[5]  
BINDING PA, 1989, P ROY SOC EDINB A, V106, P39
[6]   OSCILLATION OF EIGENFUNCTIONS OF WEIGHTED REGULAR STURM-LIOUVILLE PROBLEMS [J].
EVERITT, WN ;
KWONG, MK ;
ZETTL, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 27 (FEB) :106-120
[8]  
Gohberg IC., 1969, INTRO THEORY LINEAR
[9]   STABILITY THEOREMS FOR SINGULAR PERTURBATION OF EIGENVALUES [J].
GREENLEE, WM .
MANUSCRIPTA MATHEMATICA, 1981, 34 (2-3) :157-174
[10]  
Naimark MA, 1968, LINEAR DIFFERENTIAL