Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables

被引:29
作者
Antil, Harbir [1 ]
Heinkenschloss, Matthias [1 ]
Hoppe, Ronald H. W. [2 ,3 ]
Sorensen, Danny C. [1 ]
机构
[1] Rice Univ, Dept Computat & Appl Math, MS-134,6100 Main St, Houston, TX 77005 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
[3] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
基金
美国国家科学基金会;
关键词
Optimal control; Shape optimization; Domain decomposition; Model reduction;
D O I
10.1007/s00791-010-0142-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a technique for the dimension reduction of a class of PDE constrained optimization problems governed by linear time dependent advection diffusion equations for which the optimization variables are related to spatially localized quantities. Our approach uses domain decomposition applied to the optimality system to isolate the subsystem that explicitly depends on the optimization variables from the remaining linear optimality subsystem. We apply balanced truncation model reduction to the linear optimality subsystem. The resulting coupled reduced optimality system can be interpreted as the optimality system of a reduced optimization problem. We derive estimates for the error between the solution of the original optimization problem and the solution of the reduced problem. The approach is demonstrated numerically on an optimal control problem and on a shape optimization problem.
引用
收藏
页码:249 / 264
页数:16
相关论文
共 25 条
[1]   A variational finite element method for source inversion for convective-diffusive transport [J].
Akçelik, V ;
Biros, G ;
Ghattas, O ;
Long, KR ;
Waanders, BV .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2003, 39 (08) :683-705
[2]  
Antil H., 2009, OPTIM METH IN PRESS
[3]  
Antoulas AC, 2005, ADV DESIGN CONTROL
[4]  
BENNER P, 2005, LECT NOTES COMPUTATI, V45
[5]   Optimal control and numerical adaptivity for advection-diffusion equations [J].
Dede', L ;
Quarteroni, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (05) :1019-1040
[6]  
Dullerud G. E., 2013, TEXTS APPL MATH, V36
[7]   Multimodels for incompressible flows: Iterative solutions for the Navier-Stokes/Oseen coupling [J].
Fatone, L ;
Gervasio, P ;
Quarteroni, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (03) :549-574
[8]   Multimodels for Incompressible Flows [J].
Fatone, Lorella ;
Gervasio, Paola ;
Quarteroni, Alfio .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2000, 2 (02) :126-150
[9]   On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels [J].
Formaggia, L ;
Gerbeau, JF ;
Nobile, F ;
Quarteroni, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (6-7) :561-582
[10]   ALL OPTIMAL HANKEL-NORM APPROXIMATIONS OF LINEAR-MULTIVARIABLE SYSTEMS AND THEIR L INFINITY-ERROR BOUNDS [J].
GLOVER, K .
INTERNATIONAL JOURNAL OF CONTROL, 1984, 39 (06) :1115-1193