A novel method to compute Nash equilibrium in non-cooperative n-person games based on differential evolutionary algorithm

被引:2
作者
Li, Changbing [1 ]
Cao, Huiying [1 ]
Du, Maokang [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Elect Commerce & Logist, Chongqing, Peoples R China
来源
INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS | 2014年 / 8卷 / 03期
基金
中国国家自然科学基金;
关键词
Nash equilibrium; n-person matrix game; nonlinear constrained optimization; differential evolutionary algorithm;
D O I
10.3233/IDT-140189
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nash equilibrium constitutes a central solution concept in game theory. In this paper, a Nash equilibrium of a finite n-person non-cooperative game can be formulated to an non-linear optimal solution of the optimization model with zero optimal value. This paper investigates the effectiveness of differential evolutionary optimization to compute Nash equilibrium of noncooperative n-person games, as global minimum of a real-valued function. The experiments demonstrate the feasibility of this approach for finding an equilibrium of an N-person game.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 12 条
[1]  
[Anonymous], 2008, ADV DIFFERENTIAL EVO
[2]  
Chatterjee B., 2009, P IEEE INT C METH MO, P1, DOI DOI 10.1109/ICM2CS.2009.5397970
[3]   Computing Nash equilibria by iterated polymatrix approximation [J].
Govindan, S ;
Wilson, R .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2004, 28 (07) :1229-1241
[4]   A global Newton method to compute Nash equilibria [J].
Govindan, S ;
Wilson, R .
JOURNAL OF ECONOMIC THEORY, 2003, 110 (01) :65-86
[5]  
Govindan S., 2007, 1967 STANF U GRAD SC
[6]   EQUILIBRIUM POINTS OF BIMATRIX GAMES [J].
LEMKE, CE ;
HOWSON, JT .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1964, 12 (02) :413-423
[7]  
MCKELVEY RD, 2004, GAMBIT SOFTWARE TOOL
[8]   Simple search methods for finding a Nash equilibrium [J].
Porter, Ryan ;
Nudelman, Eugene ;
Shoham, Yoav .
GAMES AND ECONOMIC BEHAVIOR, 2008, 63 (02) :642-662
[9]  
Price K, 2005, NAT COMP SER, DOI 10.1007/3-540-31306-0
[10]   GENERALIZATION OF LEMKE-HOWSON ALGORITHM TO NONCOOPERATIVE N-PERSON GAMES [J].
ROSENMULLER, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (01) :73-+