THE METHOD OF FUNDAMENTAL-SOLUTIONS FOR NONLINEAR THERMAL EXPLOSIONS

被引:113
作者
CHEN, CS
机构
[1] Department of Mathematical Sciences, University of Nevada, Las Vegas, Nevada, 89154, Las Vegas
来源
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING | 1995年 / 11卷 / 08期
关键词
BLOW-UP; METHOD OF FUNDAMENTAL SOLUTIONS; BEM; THIN PLATE SPLINE;
D O I
10.1002/cnm.1640110806
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A numerical method based on the method of fundamental solutions, thin plate spine interpolation and monotone iteration is devised to find the minimal solution of the steady-state blow-up problem. The method of fundamental solutions requires neither domain nor boundary discretization and results in high accuracy and efficiency. For illustration, critical values of the Frank-Kamenetskii parameter are given for different geometrical boundaries in the two-dimensional case.
引用
收藏
页码:675 / 681
页数:7
相关论文
共 14 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]  
ANDERSON CA, 1974, T ASME, V96, P398
[3]  
BAGOMOLNY M, 1985, SIAM J NUMER ANAL, V22, P644
[4]   THERMAL THEORY OF SPONTANEOUS IGNITION - CRITICALITY IN BODIES OF ARBITRARY SHAPE [J].
BODDINGTON, T ;
GRAY, P ;
HARVEY, DI .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 270 (1207) :467-+
[5]   A NUMERICAL-METHOD FOR SEMILINEAR SINGULAR PARABOLIC QUENCHING PROBLEMS [J].
CHAN, CY ;
CHEN, CS .
QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (01) :45-57
[6]  
Duchon J., 1976, LECT NOTES MATH, V571
[7]  
GOLBERG MA, 1994, COMMUN BOUNDARY ELEM, V5, P57
[8]  
GOLBERG MA, 1994, BOUNDARY ELEMENT TEC, V9, P299
[9]  
GOLDBERG MA, 1994, APPL MATH COMPUT, V60, P125