Non-Archimedean hyperstability of Cauchy-Jensen functional equations on a restricted domain

被引:1
作者
El-Fassi, Iz-iddine [1 ]
机构
[1] Ibn Tofail Univ, Fac Sci, Dept Math, BP 133, Kenitra, Morocco
关键词
Non-Archimedean hyperstability; Cauchy-Jensen functional equation; fixed point theorem;
D O I
10.1515/jaa-2018-0015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a normed space, U subset of X \ {0} a non-empty subset, and (G, +) a commutative group equipped with a complete ultrametric d that is invariant (i.e., d(x + z, y + z) = d(x, y) for x, y, z is an element of G). Under some weak natural assumptions on U and on the function y: U-3 -> [0, infinity), we study the new generalized hyperstability results when f : U -> G satisfies the inequality d(alpha f(x + y/alpha + z),alpha f(z) + f(y) + f(x)) <= gamma(x, y, z) for all x, y, z is an element of U, where x+y/alpha + z is an element of U and alpha >= 2 is a fixed positive integer. The method is based on a quite recent fixed point theorem (Theorem 1 in [J. Brzdek and K. Cieplinski, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Anal. 74 (2011), no. 18, 6861-6867]) in some functions spaces.
引用
收藏
页码:155 / 165
页数:11
相关论文
共 32 条
[1]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI 10.2969/jmsj/00210064
[2]   Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces [J].
Baak, Choonkil .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (06) :1789-1796
[3]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[4]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[6]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[7]   Remarks on stability of some inhomogeneous functional equations [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :83-96
[8]   Hyperstability and Superstability [J].
Brzdek, Janusz ;
Cieplinski, Krzysztof .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[9]   A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION [J].
Brzdek, Janusz .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :33-40
[10]   Stability of additivity and fixed point methods [J].
Brzdek, Janusz .
FIXED POINT THEORY AND APPLICATIONS, 2013,