On a functional equation related to some entropies in information theory

被引:6
作者
Singh, Dhiraj Kumar [1 ]
Dass, Pranav [2 ]
机构
[1] Univ Delhi, Zakir Husain Delhi Coll, Dept Math, Jawaharlal Nehru Marg, Delhi 110002, India
[2] Galgotias Univ, Sch Comp Sci & Engn, Greater Noida 201310, Uttar Pradesh, India
关键词
Functional equation; Additive mapping; Multiplicative mapping;
D O I
10.1080/09720529.2018.1445809
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The general solutions of the functional equation Sigma(n)(i=1)Sigma(m)(j=1)f(p(i)q(i)) = Sigma(n)(i=1)g(p(i))Sigma(m)(j=1)h(q(j))+Sigma(n)(i=1)p(i)(alpha)Sigma(m)(j=1)f(q(j)) in which f, g, h are real-valued mappings each with domain I = [0,1]; (p(1),...,p(n))is an element of Gamma(n) ,(q(1),..., q(m))is an element of Gamma(m); n >= 3, m >= 3 being fixed integers; alpha > 0,alpha not equal 1,alpha is an element of R; have been obtained. Some of the solutions are related to entropies of degree alpha; entropies of degree (alpha, beta); and to Gini-Simpson index.
引用
收藏
页码:713 / 726
页数:14
相关论文
共 16 条
[1]  
Agresti A., 1978, SOCIOL METHODOL, V9, P204, DOI [10.2307/270810, DOI 10.2307/270810]
[2]  
Behara M., 1974, Kybernetika, V10, P491
[3]   THE MEASUREMENT OF LINGUISTIC DIVERSITY [J].
GREENBERG, JH .
LANGUAGE, 1956, 32 (01) :109-115
[4]  
Harvda J, 1967, KIBERNETIKA, V3, P30
[5]  
Lewontin R.C., 1972, EVOL BIOL, P381, DOI DOI 10.1007/978-1-4684-9063-3_14
[6]   MEASURING POPULATION DIVERSITY [J].
LIEBERSON, S .
AMERICAN SOCIOLOGICAL REVIEW, 1969, 34 (06) :850-862
[7]   ON SOME FUNCTIONAL-EQUATIONS OF THE INFORMATION-THEORY [J].
LOSONCZI, L ;
MAKSA, G .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1982, 39 (1-3) :73-82
[8]   On a sum form functional equation containing five unknown mappings [J].
Nath, P. ;
Singh, D. K. .
AEQUATIONES MATHEMATICAE, 2016, 90 (06) :1087-1101
[9]  
Nath P., 2011, SPRINGER OPTIMIZATIO, V52, P671
[10]  
Nath P., 2017, MATH APPL, V6, P31