ON THE STABILITY OF FIRST ORDER IMPULSIVE EVOLUTION EQUATIONS

被引:38
作者
Wang, JinRong [1 ,2 ]
Feckan, Michal [3 ,4 ]
Zhou, Yong [5 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Guiyang Sch Math & Comp Sci, Guizhou Normal Coll, Guiyang 550018, Guizhou, Peoples R China
[3] Comenius Univ, Fac Math Phys & Informat, Dept Math Anal & Numer Math, Bratislava, Slovakia
[4] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[5] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
first order; impulsive evolution equations; Ulam-Hyers-Rassias stability;
D O I
10.7494/OpMath.2014.34.3.639
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, concepts of Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for impulsive evolution equations are raised. Ulam-Hyers-Rassias stability results on a compact interval and an unbounded interval are presented by using an impulsive integral inequality of the Gronwall type. Two examples are also provided to illustrate our results. Finally, some extensions of the Ulam-Hyers-Rassias stability for the case with infinite impulses are given.
引用
收藏
页码:639 / 657
页数:19
相关论文
共 50 条
  • [21] Non-instantaneous impulsive fractional-order implicit differential equations with random effects
    Yang, Dan
    Wang, JinRong
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (04) : 719 - 741
  • [22] Positive solutions of first-order neutral differential equations
    Candan, T.
    Dahiya, R. S.
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (08) : 1266 - 1270
  • [23] First order linear fuzzy dynamic equations on time scales
    Khastan, A.
    Hejab, S.
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2019, 16 (02): : 183 - 196
  • [24] S-Almost Automorphic Solutions for Impulsive Evolution Equations on Time Scales in Shift Operators
    Wang, Chao
    Sakthivel, Rathinasamy
    N'Guerekata, Gaston M.
    [J]. MATHEMATICS, 2020, 8 (06)
  • [25] Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
    Rizwan, Rizwan
    Zada, Akbar
    Waheed, Hira
    Riaz, Usman
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (06) : 2405 - 2423
  • [26] A general class of periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
    Said Melliani
    Abdelati El Allaoui
    Lalla Saadia Chadli
    [J]. Advances in Difference Equations, 2016
  • [27] A general class of periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces
    Melliani, Said
    El Allaoui, Abdelati
    Chadli, Lalla Saadia
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [28] Existence theory and Ulam's stabilities for switched coupled system of implicit impulsive fractional order Langevin equations
    Rizwan, Rizwan
    Liu, Fengxia
    Zheng, Zhiyong
    Park, Choonkil
    Paokanta, Siriluk
    [J]. BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [29] Ulam type stability for the second-order linear Hahn difference equations
    Chen, Kai
    Si, Yuanchao
    [J]. APPLIED MATHEMATICS LETTERS, 2025, 160
  • [30] Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions
    Wan, Fan
    Liu, Xiping
    Jia, Mei
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 6066 - 6083