GEODESIC-FLOWS ON MANIFOLDS OF NEGATIVE CURVATURE WITH SMOOTH HOROSPHERIC FOLIATIONS

被引:14
作者
FERES, R
机构
[1] Mathematical Sciences Research Institute, Universidade Estadual de Campinas, Berkeley, CA 94720
关键词
D O I
10.1017/S0143385700006416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We improve and extend a result due to M. Kanai about rigidity of geodesic flows on closed Riemannian manifolds of negative curvature whose stable or unstable horospheric foliation is smooth. More precisely, the main results proved here are: (1) Let M be a closed C(infinity) Riemannian manifold of negative sectional curvature. Assume the stable or unstable foliation of the geodesic flow phi(tau): V --> V on the unit tangent bundle V of M is C(infinity). Assume, moreover, that either (a) the sectional curvature of M satisfies -4 < K less-than-or-equal-to -1 or (b) the dimension of M is odd. Then the geodesic flow of M is C(infinity)-isomorphic (i.e., conjugate under a C(infinity) diffeomorphism between the unit tangent bundles) to the geodesic flow on a closed Riemannian manifold of constant negative curvature. (2) For M as above, assume instead of (a) or (b) that dim M = 2(mod 4). Then either the above conclusion holds or phi(t) is C(infinity)-isomorphic to the flow phi(t) on the quotient GAMMA\V, where GAMMA is a subgroup of a real Lie group GBAR subset-of Diffeo (V) with Lie algebra su(1, m) + R and phi(t): V --> V is the geodesic flow on the unit tangent bundle of the complex hyperbolic space CH(m), m = 1/2 dim M.
引用
收藏
页码:653 / 686
页数:34
相关论文
共 23 条
  • [1] Anosov D.V., Geodesic flows on closed Riemann manifolds with negative curvature, Proc. Steklov Institute of Mathematics, 90, (1967)
  • [2] Benoist Y., Foulon P., Labourie F., Flots d'Anosov à distributions stable et instable différentiables
  • [3] Cheng J.H., Graded Lie algebras of the second kind, Trans. American Math. Soc., 302, pp. 467-588, (1987)
  • [4] Eberlein P., O'Neill B., Visibility manifolds, Pacific J. Math., 46, pp. 45-109, (1973)
  • [5] Feres R., Katok A., Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergod. Th. & Dynam. Sys., 9, pp. 427-432, (1989)
  • [6] Feres R., Katok A., Anosov flows with smooth foliations and rigidity of geodesic flows in three-dimensional manifolds of negative curvature, Ergod. Th. & Dynam. Sys., 10, pp. 657-670, (1990)
  • [7] Foulon P., Labourie F., Flots d'Anosov à distributions de Liapunov différentiables
  • [8] Flaminio L., Katok A., Rigidity of symplectic Anosov diffeomorphisms on low dimensional tori, Ergod. Th. & Dynam. Sys., 11, pp. 427-440, (1991)
  • [9] Ghys E., Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Sci. École Norm. Sup., 20, 4, pp. 251-270, (1987)
  • [10] Hasselblatt B., (1989)