The Inverses of Block Toeplitz Matrices

被引:9
作者
Lv, Xiao-Guang [1 ]
Huang, Ting-Zhu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
关键词
D O I
10.1155/2013/207176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the inverses of block Toeplitz matrices based on the analysis of the block cyclic displacement. New formulas for the inverses of block Toeplitzmatrices are proposed. We show that the inverses of block Toeplitz matrices can be decomposed as a sum of products of block circulant matrices. In the scalar case, the inverse formulas are proved to be numerically forward stable, if the Toeplitz matrix is nonsingular and well conditioned.
引用
收藏
页数:8
相关论文
共 22 条
[1]   A VARIANT OF THE GOHBERG-SEMENCUL FORMULA INVOLVING CIRCULANT MATRICES [J].
AMMAR, G ;
GADER, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1991, 12 (03) :534-540
[2]  
Ammar G., 1990, INT S MTNS 89, V3, P421, DOI [10.5430/cns.v1n2p80, DOI 10.5430/CNS.V1N2P80]
[3]  
Ben-Artzi A., 1985, INTEGR EQUAT OPER TH, V8, P751
[4]   ON INVERSION OF TOEPLITZ AND CLOSE TO TOEPLITZ MATRICES [J].
BENARTZI, A ;
SHALOM, T ;
SACKLER, R ;
SACKLER, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 75 :173-192
[5]   Computation of numerical Pade-Hermite and simultaneous Pade systems .1. Near inversion of generalized Sylvester matrices [J].
Cabay, S ;
Jones, AR ;
Labahn, G .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (02) :248-267
[6]   A WEAKLY STABLE ALGORITHM FOR PADE APPROXIMANTS AND THE INVERSION OF HANKEL-MATRICES [J].
CABAY, S ;
MELESHKO, R .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (03) :735-765
[7]   Computation of numerical Pade-Hermite and simultaneous Pade systems .2. A weakly stable algorithm [J].
Cabay, S ;
Jones, AR ;
Labahn, G .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (02) :268-297
[8]   Schur complements of Bezoutians and the inversion of block Hankel and block Toeplitz matrices [J].
Gemignani, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 253 :39-59
[9]   CIRCULANTS, DISPLACEMENTS AND DECOMPOSITIONS OF MATRICES [J].
GOHBERG, I ;
OLSHEVSKY, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (05) :730-743
[10]  
Gohberg I., 1972, MAT ISSLED, V2, P201