Log Hodge Theoretic Formulation of Mirror Symmetry for Calabi-Yau Threefolds

被引:0
作者
Usui, Sampei [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
关键词
Log Hodge theory; Mirror symmetry; Calabi-Yau threefold;
D O I
10.1007/s10013-014-0085-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We hope to understand the Hodge theoretic aspect of mirror symmetry in the framework of the fundamental diagram of log mixed Hodge theory. We give a formulation of mirror conjecture for Calabi-Yau threefolds as the coincidence of log period maps with specified sections under the mirror map. Since a variation of Hodge structure with unipotent monodromies on a product of punctured discs uniquely extends over the puncture to a log Hodge structure, we can work on the boundary point over which the log Riemann-Hilbert correspondence exists, and we can observe clearly in high resolution the behavior of Zstructure over the boundary point (cf. notes in Introduction below). This is an advantage of log Hodge theory.
引用
收藏
页码:345 / 363
页数:19
相关论文
共 18 条
[1]  
COX DA, 1999, MATH SURVEYS MONOGRA, V68
[2]  
Deligne P., 1997, AMS IP STUD ADV MATH, V1, P683
[4]   QUANTUM COHOMOLOGY AND PERIODS [J].
Iritani, Hiroshi .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (07) :2909-2958
[5]  
Kato K., 2013, KYOTO J MATH, V22, P671, DOI [10.1090/S1056-3911-2013-00629-3, DOI 10.1090/S1056-3911-2013-00629-3]
[6]  
KATO K, 2002, ADV STUDIES PURE MAT, V36, P321
[7]  
Kato K., 2009, ANN MATH STUDIES, V169
[8]   SL(2)-ORBIT THEOREM FOR DEGENERATION OF MIXED HODGE STRUCTURE [J].
Kato, Kazuya ;
Nakayama, Chikara ;
Usui, Sampei .
JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (03) :401-479
[9]   Neron models for admissible normal functions [J].
Kato, Kazuya ;
Nakayama, Chikara ;
Usui, Sampei .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (01) :6-10
[10]   Classifying spaces of degenerating mixed Hodge structures, II: Spaces of SL(2)-orbits [J].
Kato, Kazuya ;
Nakayama, Chikara ;
Usui, Sampei .
KYOTO JOURNAL OF MATHEMATICS, 2011, 51 (01) :149-261