RENORMALIZATION AND WHITE-NOISE APPROXIMATION FOR NONPARAMETRIC FUNCTIONAL ESTIMATION PROBLEMS

被引:17
作者
LOW, MG [1 ]
机构
[1] UNIV CALIF BERKELEY, BERKELEY, CA 94720 USA
关键词
NONPARAMETRIC FUNCTIONAL ESTIMATION; RENORMALIZATION; WHITE NOISE APPROXIMATION; DENSITY ESTIMATION;
D O I
10.1214/aos/1176348538
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
White noise models often renormalize exactly yielding optimal rates of convergence for pointwise nonparametric functional estimation problems. Similar rescaling ideas lead to a sequence of experiments appropriate for pointwise density estimation problems.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 13 条
[1]  
BROWN LD, 1990, ASYMPTOTIC EQUIVALEN
[2]   GEOMETRIZING RATES OF CONVERGENCE .3. [J].
DONOHO, DL ;
LIU, RC .
ANNALS OF STATISTICS, 1991, 19 (02) :668-701
[3]  
DONOHO DL, 1990, WHITE NOISE APPROXIM
[4]  
DONOHO DL, 1990, RENORMALIZATION EXPO
[5]   BEST OBTAINABLE ASYMPTOTIC RATES OF CONVERGENCE IN ESTIMATION OF A DENSITY-FUNCTION AT A POINT [J].
FARRELL, RH .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (01) :170-&
[6]   ASYMPTOTICALLY NORMAL-FAMILIES OF DISTRIBUTIONS AND EFFICIENT ESTIMATION [J].
IBRAGIMOV, IA ;
KHASMINSKII, RZ .
ANNALS OF STATISTICS, 1991, 19 (04) :1681-1724
[7]  
IBRAGIMOV IA, 1984, TEOR VEROYA PRIMEN, V29, P19
[8]  
LeCam L., 1986, ASYMPTOTIC METHODS S
[9]  
LOW MG, 1991, RENORMALIZING UPPER
[10]   ASYMPTOTIC MINIMAX THEOREMS FOR THE SAMPLE DISTRIBUTION FUNCTION [J].
MILLAR, PW .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (03) :233-252