1ST INTEGRALS AND STABILITY ESTIMATES FOR ISOCHRONOUS NONRESONANT SYMPLECTIC MAPS

被引:4
作者
BAZZANI, A [1 ]
MARMI, S [1 ]
机构
[1] UNIV FLORENCE,DIPARTIMENTO MATEMAT U DINI,I-50134 FLORENCE,ITALY
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1991年 / 106卷 / 06期
关键词
D O I
10.1007/BF02813234
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that nonresonant isochronous symplectic maps in a neighbourhood of an elliptic fixed point have as many approximate polynomial first integrals as the number of degrees of freedom. From this we deduce a stability estimate for exponentially long times with the inverse of the distance from the fixed point. In the proof we make use of the majorant series method, and a functional equation verified by the majorant series used is studied in detail.
引用
收藏
页码:673 / 688
页数:16
相关论文
共 29 条
[1]  
BAZZANI A, 1988, CELESTIAL MECH, V42, P107, DOI 10.1007/BF01232951
[2]   NORMAL FORMS FOR HAMILTONIAN MAPS AND NONLINEAR EFFECTS IN A PARTICLE ACCELERATOR [J].
BAZZANI, A ;
MAZZANTI, P ;
SERVIZI, G ;
TURCHETTI, G .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1988, 102 (01) :51-80
[3]  
BAZZANI A, 1989, PERTURBATIVE METHODS
[4]  
BAZZANI A, 1990, CELESTIAL MECH, V47, P333
[5]  
BAZZANI A, 1989, ATTI SEMIN MAT FIS, V37, P157
[6]  
BAZZANI A, 1989, EPAC C P
[7]   REALIZATION OF HOLONOMIC CONSTRAINTS AND FREEZING OF HIGH-FREQUENCY DEGREES OF FREEDOM IN THE LIGHT OF CLASSICAL PERTURBATION-THEORY .1. [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 113 (01) :87-103
[8]   REALIZATION OF HOLONOMIC CONSTRAINTS AND FREEZING OF HIGH-FREQUENCY DEGREES OF FREEDOM IN THE LIGHT OF CLASSICAL PERTURBATION-THEORY .2. [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (04) :557-601
[9]   STABILITY OF MOTIONS NEAR RESONANCES IN QUASI-INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BENETTIN, G ;
GALLAVOTTI, G .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (3-4) :293-338
[10]   A PROOF OF NEKHOROSHEV THEOREM FOR THE STABILITY TIMES IN NEARLY INTEGRABLE HAMILTONIAN-SYSTEMS [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A .
CELESTIAL MECHANICS, 1985, 37 (01) :1-25