CYCLOTOMIC INVARIANTS FOR PRIMES BETWEEN 125000 AND 150000

被引:11
作者
ERNVALL, R
METSANKYLA, T
机构
关键词
CYCLOTOMIC FIELDS; BERNOULLI NUMBERS; IRREGULAR PRIMES; IWASAWA INVARIANTS; CLASS NUMBERS; COMPUTATION;
D O I
10.2307/2008413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computations by Iwasawa and Sims, by Johnson, and by Wagstaff have determined certain important cyclotomic invariants for all primes up to 125000. We extended their results to 150000, basing our work on a recently computed list of irregular primes and using a new method.
引用
收藏
页码:851 / 858
页数:8
相关论文
共 11 条
[1]   COMPUTATION OF INVARIANTS IN THEORY OF CYCLOTOMIC FIELDS [J].
IWASAWA, K ;
SIMS, CC .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1966, 18 (01) :86-+
[2]   P-ADIC PROOFS OF CONGRUENCES FOR BERNOULLI NUMBERS [J].
JOHNSON, W .
JOURNAL OF NUMBER THEORY, 1975, 7 (02) :251-265
[3]  
JOHNSON W, 1974, MATH COMPUT, V28, P653, DOI 10.1090/S0025-5718-1974-0347727-0
[4]  
JOHNSON W, 1975, MATH COMPUT, V29, P113, DOI 10.1090/S0025-5718-1975-0376606-9
[5]   VANISHING OF IWASAWA INVARIANT MUP FOR P LESS-THAN 8000 [J].
JOHNSON, W .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :387-396
[6]  
Lang S., 1980, CYCLOTOMIC FIELDS
[7]   On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J].
Lehmer, E .
ANNALS OF MATHEMATICS, 1938, 39 :350-360
[8]  
METSANKYLA T, 1987, VORONOI CONGRUENCE B, P112
[9]  
TANNER JW, 1987, MATH COMPUT, V48, P341, DOI 10.1090/S0025-5718-1987-0866120-4
[10]   IRREGULAR PRIMES TO 125000 [J].
WAGSTAFF, SS .
MATHEMATICS OF COMPUTATION, 1978, 32 (142) :583-591