LYAPUNOV EQUATION FOR INFINITE-DIMENSIONAL DISCRETE BILINEAR-SYSTEMS

被引:3
|
作者
COSTA, OLV
KUBRUSLY, CS
机构
[1] NATL LAB SCI COMPUTAT,NACL,COMPUTACAO CIENT LAB,RIO DE JANEIRO,BRAZIL
[2] CATHOLIC UNIV RIO DE JANIERO,RIO DE JANEIRO,BRAZIL
关键词
DISCRETE BILINEAR SYSTEMS; INFINITE-DIMENSIONAL SYSTEMS; OPERATOR THEORY; STABILITY;
D O I
10.1016/0167-6911(91)90100-S
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mean-square stability for discrete systems requires that uniform convergence is preserved between input and state correlation sequences. Such a convergence preserving property holds for an infinite-dimensional bilinear system if and only if the associate Lyapunov equation has a unique strictly positive solution.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [1] AN OBSERVER FOR INFINITE-DIMENSIONAL DISSIPATIVE BILINEAR-SYSTEMS
    XU, CZ
    LIGARIUS, P
    GAUTHIER, JP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (07) : 13 - 21
  • [2] Lyapunov functions for infinite-dimensional systems
    Kocan, M
    Soravia, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 192 (02) : 342 - 363
  • [3] MEAN-SQUARE STABILITY FOR DISCRETE BILINEAR-SYSTEMS IN HILBERT-SPACE
    KUBRUSLY, CS
    COSTA, OLV
    SYSTEMS & CONTROL LETTERS, 1992, 19 (03) : 205 - 211
  • [4] Global converse Lyapunov theorems for infinite-dimensional systems
    Mironchenko, Andrii
    Wirth, Fabian
    IFAC PAPERSONLINE, 2016, 49 (18): : 897 - 902
  • [5] Converse Lyapunov theorems for infinite-dimensional nonlinear switching systems
    Haidar, Ihab
    Chitour, Yacine
    Mason, Paolo
    Sigalotti, Mario
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 587 - 592
  • [6] On the Lyapunov exponents of infinite-dimensional discrete time-varying linear system
    Czornik, Adam
    Jurgas, Piotr
    2016 21ST INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2016, : 496 - 499
  • [7] Integral input-to-state stability of bilinear infinite-dimensional systems
    Mironchenko, Andrii
    Ito, Hiroshi
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3155 - 3160
  • [8] Existence of Common Lyapunov Functions for Infinite-Dimensional Switched Linear Systems
    Hante, Falk M.
    Sigalotti, Mario
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5668 - 5673
  • [9] Lyapunov Characterization of Uniform Exponential Stability for Nonlinear Infinite-Dimensional Systems
    Haidar, Ihab
    Chitour, Yacine
    Mason, Paolo
    Sigalotti, Mario
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (04) : 1685 - 1697
  • [10] Power stability of discrete linear switched infinite-dimensional systems
    Sun Wei
    Zhao Yi
    Huang Yu
    PROCEEDINGS OF 2006 CHINESE CONTROL AND DECISION CONFERENCE, 2006, : 87 - 89