A NEWTON-LANCZOS METHOD FOR SOLUTION OF NON-LINEAR FINITE-ELEMENT EQUATIONS

被引:16
作者
NOUROMID, B [1 ]
PARLETT, BN [1 ]
TAYLOR, RL [1 ]
机构
[1] UNIV CALIF BERKELEY, DEPT MATH, BERKELEY, CA 94720 USA
关键词
D O I
10.1016/0045-7949(83)90164-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:241 / 252
页数:12
相关论文
共 14 条
[1]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[2]  
GURTIN ME, 1981, TOPICS FINITE ELASTI, P35
[3]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[4]  
Householder A. S., 1964, THEORY MATRICES NUME
[5]   SOLUTION OF SYSTEMS OF LINEAR EQUATIONS BY MINIMIZED ITERATIONS [J].
LANCZOS, C .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (01) :33-53
[6]   SOLUTION OF NON-LINEAR FINITE-ELEMENT EQUATIONS [J].
MATTHIES, H ;
STRANG, G .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1979, 14 (11) :1613-1626
[7]  
NAZARETH L, UNPUB BFGS METHOD 1
[8]  
NAZARETH L, UNPUB BFGS METHOD 2
[9]  
Paige C.C., 1971, THESIS U LONDON
[10]  
PARLETT B. N., 1980, SYMMETRIC EIGENVALUE, DOI DOI 10.1137/1.9781611971163