Heterotrimeric G proteins in green algae An early innovation in the evolution of the plant lineage

被引:21
|
作者
Hackenberg, Dieter [1 ]
Pandey, Sona [1 ]
机构
[1] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA
基金
美国国家科学基金会;
关键词
Heterotrimeric G-proteins; Green algae; Evolution; Chara braunii; Charophytes;
D O I
10.4161/psb.28457
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophycean green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1-1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions.
引用
收藏
页数:5
相关论文
empty
未找到相关数据