LOCAL STABILITY OF CRITICAL FRONTS IN NONLINEAR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS

被引:79
作者
GALLAY, T
机构
[1] Dept. de Phys. Theorique, Geneva Univ.
关键词
D O I
10.1088/0951-7715/7/3/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Ginzburg-Landau equation and similar nonlinear parabolic partial differential equations on the real line, we prove the nonlinear stability of the slowest monotonic front solution by computing explicitly the leading term in the asymptotic behaviour of a small perturbation as t --> infinity. The proof is based on the renormalization group method for parabolic equations.
引用
收藏
页码:741 / 764
页数:24
相关论文
共 14 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[3]  
BRICMONT J, 1993, IN PRESS COMMUN MATH
[4]  
BRICMONT J, 1993, IN PRESS COMMUN PURE
[5]  
Dunford N., 1958, LINEAR OPERATORS 1
[6]  
ECKMANN JP, 1993, NONLINEAR STABILITY
[7]  
Friedman A., 1983, PARTIAL DIFFERENTIAL
[8]  
Kato T., 1966, PERTURBATION THEORY
[9]   ON THE NONLINEAR DYNAMICS OF TRAVELING FRONTS [J].
KIRCHGASSNER, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (02) :256-278
[10]  
KOLMOGOROV AN, 1991, SELECTED WORKS AN KO